
1

1

&6(�������$OJRULWKPV�DQG

&RPSXWDWLRQDO�&RPSOH[LW\

Winter 2001
Lecture 25

Instructor: Paul Beame

2

What to do if the problem you
want to solve is NP-hard

❚ You might have phrased your problem too
generally
❙ e.g., in practice, the graphs that actually arise

are far from arbitrary
❘ maybe they have some special characteristic that

allows you to solve the problem in your special
case

• for example the Clique problem is easy on “interval
graphs”.

❘ search the literature to see if special cases already
solved

3

What to do if the problem you
want to solve is NP-hard

❚ Try to find an approximation algorithm
❙ Maybe you can’t get the size of the best

Vertex Cover but you can find one within a
factor of 2 of the best
❘ Given graph G=(V,E), start with an empty cover

❘ While there are still edges in E left

• Choose an edge e={u,v} in E and add both u
and v to the cover

• Remove all edges from E that touch either u or
v.

❘ Edges chosen don’t share any vertices so optimal
cover size must be at least # of edges chosen 4

What to do if the problem you
want to solve is NP-hard

❚ Try to find an approximation algorithm
❙ Recent research has classified problems based on

what kinds of approximations are possible if P≠NP

❘ Best: (1+ε) factor for any ε>0.
• packing and some scheduling problems, TSP in plane

❘ Some fixed constant factor > 1, e.g. 2, 3/2, 100
• Vertex Cover, TSP in space, other scheduling problems

❘ Θ(log n) factor
• Set Cover, Graph Partitioning problems

❘ Worst: Ω(n1-ε) factor for any ε>0
• Clique, Independent-Set, Coloring

5

What to do if the problem you
want to solve is NP-hard

❚ Try an algorithm that is provably fast “on
average”.
❙ To even try this one needs a model of what a

typical instance is.
❙ Typically, people consider “random graphs”

❘ e.g. all graphs with a given # of edges are equally
likely

❙ Problems:
❘ real data doesn’t look like the random graphs

❘ distributions of real data aren’t analyzable

6

What to do if the problem you
want to solve is NP-hard
❚ Try to search the space of possible hints in a

more efficient way and hope it is quick enough
❙ e.g. back-tracking search

❘ For Satisfiability there are 2n possible truth assignments

❘ If we set the truth values one-by-one we might be able to
figure out whole parts of the space to avoid,

• e.g. After setting x1←1, x2←0 we don’t even need to set
x3 or x4 to know that it won’t satisfy
(¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (x4 ∨ ¬x3) ∧ (x1 ∨ ¬x4)

❘ For Satisfiability this seems to run in times like 2n/20 on
typical hard instances.

❘ Related technique: branch-and-bound

2

7

What to do if the problem you
want to solve is NP-hard

❚ Use heuristic algorithms and hope they
give good answers
❙ No guarantees of quality
❙ Many different types of heuristic algorithms

❙ Many different options, especially for
optimization problems, such as TSP, where
we want the best solution.
❘ We’ll mention several on following slides

8

Heuristic algorithms for
NP-hard problems

❚ local search for optimization problems
❙ need a notion of two solutions being

neighbors
❙ Start at an arbitrary solution S
❙ While there is a neighbor T of S that is better

than S
❘ S←T

❚ Usually fast but often gets stuck in a local
optimum and misses the global optimum
❙ With some notions of neighbor can take a long time

in the worst case

9

e.g., Neighboring solutions for
TSP

Solution S Solution T

Two solutions are neighbors
iff there is a pair of edges you can
swap to transform one to the other

10

Heuristic algorithms for
NP-hard problems

❚ randomized local search
❙ start local search several times from random starting points and

take the best answer found from each point
❘ more expensive than plain local search but usually much

better answers

❚ simulated annealing
❙ like local search but at each step sometimes move to a worse

neighbor with some probability
❘ probability of going to a worse neighbor is set to decrease with time

as, presumably, solution is closer to optimal
❘ helps avoid getting stuck in a local optimum but often slow to

converge (much more expensive than randomized local search)
❘ analogy with slow cooling to get to lowest energy state in a crystal

(or in forging a metal)

11

Heuristic algorithms for
NP-hard problems

❚ genetic algorithms
❙ view each solution as a string (analogy with DNA)

❙ maintain a population of good solutions

❙ allow random mutations of single characters of individual
solutions

❙ combine two solutions by taking part of one and part of another
(analogy with crossover in sexual reproduction)

❙ get rid of solutions that have the worst values and make multiple
copies of solutions that have the best values (analogy with
natural selection -- survival of the fittest).

❙ little evidence that they work well and they are usually very
slow

❘ as much religion as science
12

Heuristic algorithms
❚ artificial neural networks

❙ based on very elementary model of human neurons

❙ Set up a circuit of artificial neurons
❘ each artificial neuron is an analog circuit gate whose

computation depends on a set of connection strengths

❙ Train the circuit
❘ Adjust the connection strengths of the neurons by giving

many positive & negative training examples and seeing if it
behaves correctly

❙ The network is now ready to use

❙ useful for ill-defined classification problems such as optical
character recognition but not typical cut & dried problems

3

13

Other fun directions
❚ DNA computing

❙ Each possible hint for an NP problem is represented
as a string of DNA

❘ fill a test tube with all possible hints

❙ View verification algorithm as a series of tests
❘ e.g. checking each clause is satisfied in case of Satisfiability

❙ For each test in turn
❘ use lab operations to filter out all DNA strings that fail the

test (works in parallel on all strings; uses PCR)

❙ If any string remains the answer is a YES.
❙ Relies on fact that Avogadro’s # 6 x 1023 is large to get

enough strings to fit in a tes t-tube.
❙ Error-prone & so far only problem sizes less than 15!

14

Other fun directions
❚ Quantum computing

❙ Use physical processes at the quantum level to
implement weird kinds of circuit gates

❘ unitary transformations

❙ Quantum objects can be in a superposition of many
pure states at once

❘ can have n objects together in a superposition of 2n states

❙ Each quantum circuit gate operates on the whole
superposition of states at once

❘ inherent parallelism

❙ Need totally new kinds of algorithms to work well.
Theoretically able to factor efficiently but huge practical
problems: errors, decoherence.

