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Turing Machines

❚ Church-Turing Thesis
❙ Any reasonable model of computation that

includes all possible algorithms is equivalent
in power to a Turing machine

❚ Evidence
❙ Huge numbers of equivalent models to TM’s

based on radically different ideas
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Universal Turing Machine

❚ A Turing machine interpreter  U
❙ On input the code of a program (or Turing

machine) P and an input x,  U outputs the
same thing as P does on input x

❙ Basis for modern stored-program computer

❚ Notation:
❙ We’ll write <P> for the code of program P and

<P,x> for the pair of the program code and
input 4

Halting Problem

❚ Given: the code of a program P and an
input x for P, i.e. given <P,x>

❚ Output: 1 if P halts on input x and 0 if P
does not halt on input x

❚ Theorem (Turing):  There is no program
that solves the halting problem

“The halting problem is undecidable”

5

Proof ideas: Countability
(Cantor 1875)

❚ Defn: A set S is countable iff there is a
function mapping the natural numbers N
onto S.
❙ i.e. we can write S={s1, s2, s3,...}, i.e. f(i)=si

❚ All finite sets are countable.
❚ The natural numbers are countable
❚ The integers are countable

❙ Z={0,1,-1,2,-2,3,-3,4,-4,5,-5,...}
❙       1 2   3  4   5  6  7  8  9  10 11 ... 6

Countability

❚ The set of all finite strings with any
alphabet is countable,
❙ e.g. binary strings

❙ S={ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, ...}

❙ i.e. list strings in order of increasing length

❚ Any program code is a string and given any string w, we
can interpret w as a program (syntactically incorrect
programs are just no-ops) so the set of all programs is
countable, too.

1  2   3   4     5      6      7     8        9       10     11     12  

0     1                 2                                     3 
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Uncountability

❚ The set of all functions f from the natural
numbers N to {0,1} is not countable.

❚ Suppose it were and we had a list of all
such functions {f1,f2,f3,...}

❚ We build an infinite table of these
functions
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1  2  3  4  5  6  7  8  9  10  11   12  ....
input

f1
f2
f3
f4
f5
f6
f7
f8
.
.
.

fu
nc

tio
n

0   1  1  0  1  1  1  0  0   0    1     1  ....
1   1  0  1  0  1  1  0  1   1    1     0  ....
1   0  1  0  0  0  0  0  0   0    1     1  ....
0   1  1  0  1  0  1  1  0   1    0     1  ....
0   1  0  0  1  1  1  0  0   0    1     1  ....
1   1  0  1  1  1  1  0  1   1    1     0  ....
1   0  1  0  0  1  0  0  0   0    1     1  ....
0   1  1  0  0  0  1  1  0   1    0     1  ....
 .     .   .  .   .    .   .   .   .    .    .       .  
 .     .   .  .   .    .   .   .   .    .    .       .  
 .     .   .  .   .    .   .   .   .    .    .       .  
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1  2  3  4  5  6  7  8  9  10  11   12  ....
input

f1
f2
f3
f4
f5
f6
f7
f8
.
.
.

fu
nc

tio
n

0   1  1  0  1  1  1  0  0   0    1     1  ....
1   1  0  1  0  1  1  0  1   1    1     0  ....
1   0  1  0  0  0  0  0  0   0    1     1  ....
0   1  1  0  1  0  1  1  0   1    0     1  ....
0   1  0  0  1  1  1  0  0   0    1     1  ....
1   1  0  1  1  1  1  0  1   1    1     0  ....
1   0  1  0  0  1  0  0  0   0    1     1  ....
0   1  1  0  0  0  1  1  0   1    0     1  ....
 .     .   .  .   .    .   .   .   .    .    .       .  
 .     .   .  .   .    .   .   .   .    .    .       .  
 .     .   .  .   .    .   .   .   .    .    .       .  
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1  2  3  4  5  6  7  8  9  10  11   12  ....
input

f1
f2
f3
f4
f5
f6
f7
f8
.
.
.

fu
nc

tio
n

1   1  1  0  1  1  1  0  0   0    1     1  ....
1   0  0  1  0  1  1  0  1   1    1     0  ....
1   0  0  0  0  0  0  0  0   0    1     1  ....
0   1  1  1  1  0  1  1  0   1    0     1  ....
0   1  0  0  0  1  1  0  0   0    1     1  ....
1   1  0  1  1  0  1  0  1   1    1     0  ....
1   0  1  0  0  1  1  0  0   0    1     1  ....
0   1  1  0  0  0  1  0  0   1    0     1  ....
 .     .   .  .   .    .   .   .   .    .    .       .  
 .     .   .  .   .    .   .   .   .    .    .       .  
 .     .   .  .   .    .   .   .   .    .    .       .  
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Diagonalization

❚ Define function D from N to {0,1} such that
❙ D(i)=1-fi(i)
❙ i.e. we flipped the diagonal elements

❚ D must be different from every function in
the list since D differs from fi on input i

❚ Contradicts our assumption that the list had all
such functions!

❚ Corollary: There is some function f from N
to {0,1} not computed by any program
❙ more functions than programs! 12

Undecidability of the Halting
Problem

❚ Suppose that there is a program H that
computes the answer to the Halting
Problem

❚ We’ll build a similar table with all the
possible programs down one side and all
the possible inputs along the other and do
a diagonal flip to produce a contradiction
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ε   0  1  00  01  10  11  000  001  010  011 ....
input

ε
0
1

00
01
10
11
000
001

.

.

pr
og

ra
m

 c
od

e

0   1  1  0    1     1    1     0      0      0      1  ....
1   1  0  1    0     1    1     0      1      1      1  ....
1   0  1  0    0     0    0     0      0      0      1  ....
0   1  1  0    1     0    1     1      0      1      0  ....
0   1  1  1    1     1    1     0      0      0      1  ....
1   1  0  0    0     1    1     0      1      1      1  ....
1   0  1  1    0     0    0     0      0      0      1  ....
0   1  1  1    1     0    1     1      0      1      0  ....
 .     .   .  .   .    .   .   .   .    .    .       .  
 .     .   .  .   .    .   .   .   .    .    .       .  

Entries are 1 if program P given by the code halts on input x
and 0 if it runs forever
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ε   0  1  00  01  10  11  000  001  010  011 ....
input

ε
0
1

00
01
10
11
000
001

.

.

pr
og

ra
m

 c
od

e

1   1  1  0    1     1    1     0      0      0      1  ....
1   0  0  1    0     1    1     0      1      1      1  ....
1   0  0  0    0     0    0     0      0      0      1  ....
0   1  1  1    1     0    1     1      0      1      0  ....
0   1  1  1    0     1    1     0      0      0      1  ....
1   1  0  0    0     0    1     0      1      1      1  ....
1   0  1  1    0     0    1     0      0      0      1  ....
0   1  1  1    1     0    1     0      0      1      0  ....
 .     .   .  .   .    .   .   .   .    .    .       .  
 .     .   .  .   .    .   .   .   .    .    .       .  

Want to create a new program whose halting
properties are given by the flipped diagonal
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Diagonal construction

❚ Suppose H exists
❚ Now define a new program D such that

❙ D on input x:
❘ runs H checking if the program P whose code is x

halts when given x as input; i.e. does P halt on
input <P>

❘ if H outputs 1 then D goes into an infinite loop

❘ if H outputs 0 then D halts.
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Finishing the argument

❚ D must be different from any program in
the list.

❚ Suppose it has code <D>
❙ then D halts on input <D> iff
❙ H outputs 0 given program D and input <D>

iff
❙ P runs forever on input <P>


