CSE 417: Algorithms and
Computational Complexity

Winter 2001
Lecture 15
Instructor: Paul Beame

Pattern Matching

Given
a string, s, of n characters
a pattern, p, of m characters
usually m<<n
Find
all occurrences of the pattern p in the string s

Obvious algorithm:

try to see if p matches at each of the positions in s,
stopping at a failed match

Sting S =Xy XXYXYXYYXYXYXYYXYXYXX
Pattern p=xyXyy Xy XxyXxXx

Sting S =Xy XXYXYXYYXYXYXYYXYXYXX
Xyxy

StiNg S =Xy XXYXYXYYXYXYXYYXYXYXX
Xyxy

X

Sting S =Xy XXYXYXYYXYXYXYYXYXYXX
Xyxy

X
Xy




StiNg S =Xy XXYXYXYYXYXYXYYXYXYXX
Xyxy
X

Xy
XyXyy

StiNg S =Xy XXYXYXYYXYXYXYYXYXYXX
Xyxy
X

Xy
XyXyy
X

Sting S =Xy XXYXYXYYXYXYXYYXYXYXX
Xyxy

X
Xy
XyXyy
X

XYXYYXYXYXX

StiNg S =Xy XXYXYXYYXYXYXYYXYXYXX
Xyxy

X
Xy
XYyXyy
X

XYXYYXYXYXX
X

Sting S =Xy XXYXYXYYXYXYXYYXYXYXX
Xyxy

X
Xy
XyXyy
X
XYXYYXYXYXX
X
XY X

Sting S =Xy XXYXYXYYXYXYXYYXYXYXX
Xyxy

X
Xy
XyXyy
X
XYXYYXYXYXX
X
XY X

X




StiNg S =Xy XXYXYXYYXYXYXYYXYXYXX
Xyxy
X

Xy
XyXyy
X
XYXYYXYXYXX
X

XY X
X
X

StiNg S =Xy XXYXYXYYXYXYXYYXYXYXX
Xy Xy
X
Xy
XyXyy
X
XYXYYXYXYXX
X

XY X
X
X

XyXyy

Sting S =Xy XXYXYXYYXYXYXYYXYXYXX
Xyxy

X
Xy
XyXyy
X
XYXYYXYXYXX
X
XYy X
X
X
XyXyy
X

StiNg S =Xy XXYXYXYYXYXYXYYXYXYXX
Xyxy

X
Xy
XYy Xyy
X
XYXYYXYXYXX
Worst-case time YV X
O(mn) 2’(
X
XYy Xyy
X

XYXYYXYXYXX

Sting S =Xy XXYXYXYYXYXYXYYXYXYXX
Xyxy

Lots of wasted work
(5o

Suppose we knew the XY XYY Xy Xy XX
pattern well

Since we know earlier agreement
of the string with the pattern,
these can’t possibly match

XY XYYXYXYXX

Preprocess the Pattern

After each character in the pattern figure
out ahead of time what the next useful
work would be if it failed to match there

i.e. how much can one shift over the pattern
for the next match




StiNg S =XYXXYXYXYYXYXYXYYXYXYyXX
Xyxy

yXyy
YYXYXYXX

YXY XY XX

Preprocessing the pattern

At each mismatch

Look at the last part that matched plus extra
mismatched character

Try to fit pattern as far to the left in this as
possible

i.e. look for the longest prefix of the pattern that
matches the end of the sequence so far.

Preprocessing the pattern

Pattern p=xy Xy y Xy Xy X X

> X y X y y X y X y X X

SR
Y

Each dot represents how far in the pattern things are matched

Preprocessing the pattern

Pattern p=xy Xy y Xy Xy X X

>Q y X y y X y X y X X S~

Preprocessing the pattern

Pattern p=xy Xy y Xy Xy X X

X
X
>X Yy X\yj.y X Yy X Yy X X%
X
y

Y
Preprocessing the pattern
Pattern p=xy Xy y Xy Xy x X
X y X X s\
Y




Preprocessing the pattern

Pattern p=xy Xy y Xy Xy X X

Running on the string
StriNg S=XYXXYXYXYYXYXYXYYXYXYXX

Knuth-Morris-Pratt Algorithm

Once the preprocessing is done there are
only n steps on any string of size n

just follow your nose
Obvious algorithm for doing preprocessing
is O(m?) steps

still usually good since m<<n
Knuth-Morris-Pratt Algorithm can do the
pre-processing in O(m) steps

Total O(m+n) time

Finite State Machines

The diagram we built is a special case of a
finite automaton

start state

goal or accepting state(s)

an arc out of each state labeled by each of

the possible characters
Finite automata take strings of characters
as input and decide what to do with them
based on the paths they follow

Finite State Machines

Many communication protocols,
cache-coherency protocols, VLSI circuits,
user-interfaces, even adventure games
are designed by making finite state
machines first.
The “strings” that are the input to the
machines can be
a sequence of actions of the user
the bits that arrive on particular ports of the chip
a series of values on a bus

Finite State Machines

Can search for arbitrary combinations of
patterns not just a single pattern
Given two finite automata can build a single
new one that accepts strings that either of the
original ones accepted
Typical text searches are based on finite
automata designs

Perl builds this in as a first-class component
of the programming language.




Next time

We start the computability and complexity
portion of the course.

We discuss Turing machines which are
similar in style to finite-state machines but
much more powerful

as powerful as any programming language




