CSE 417: Algorithms and Computational Complexity

Winter 2001 Lecture 13 Instructor: Paul Beame

All-pairs shortest paths

- If no negative-weight edges and sparse graphs run Dijsktra from each vertex O(nm log n)
- What about other cases?

2

Floyd's Algorithm Idea

Interior vertices in a path

- Dijsktra's Algorithm
 - I at each step always computed shortest paths that only had interior vertices from a set S at each step
- Floyd's Algorithm
 - slowly add interior vertices on fixed schedule rather than depending on the graph

Floyd's Algorithm

- Vertices $V=\{v_1,...,v_n\}$
- Let D_k[i,j] = length of shortest path from v_i to v_j that only allows {v₁,...,v_k} as interior vertices
- Note

 - $D_n[i,j] = length of shortest path from <math>v_i$ to v_j

Floyd's Algorithm Computing $D_k[i,j]$ vertices from $v_1,...,v_k$ Case 1: v_k not used $D_k[i,j] = D_{k-1}[i,j]$ vertices from $v_1,...,v_{k-1}$

Floyd's Algorithm Case 2: v_k used vertices from v₁,...,v_{k-1} not on shortest path since no negative cycles vi vertices from v₁,...,v_{k-1}

Floyd's Algorithm O(n³) time O(n³) time O(n²) storage by maintaining array for last two values of kD₀—weight matrix of Gfor k=1 to n do for i=1 to n do $D_k[i,j] \leftarrow \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$ endfor endfor endfor

Multiplying Faster

- On the first HW you analyzed our usual algorithm for multiplying numbers
 - I Θ(n²) time
- We can do better!
 - We'll describe the basic ideas by multiplying polynomials rather than integers
 - Advantage is we don't get confused by worrying about carries at first

Note on Polynomials

I These are just formal sequences of coefficients so when we show something multiplied by xk it just means shifted k places to the left

Polynomial Multiplication

Given:

Degree n-1 polynomials P and Q $P = a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n x^2$

 $| P = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0$ $| Q = b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \dots + b_2 x^2 + b_1 x + b_0$

Compute:

■ Degree 2n-2 Polynomial P•Q

 $\begin{array}{l} \textbf{I} \ \ \ \textbf{P} \bullet \textbf{Q} = a_{n-1} b_{n-1} \, \textbf{x}^{2n-2} \, + \, \left(a_{n-1} b_{n-2} + a_{n-2} b_{n-1} \right) \, \textbf{x}^{2n-3} \, + \, \dots \\ + \left(a_{n-1} b_{i+1} + a_{n-2} b_{i+2} + \dots + a_{i+1} b_{n-1} \right) \, \textbf{x}^{n+i} \, + \dots + a_0 b_0 \end{array}$

Obvious Algorithm:

Compute all aibi and collect terms

I Θ (n²) time

11

Naive Divide and Conquer

```
■ Assume n is a power of 2

■ P = (a_{n-1}x^{n/2-1} + a_{n-2}x^{n/2-2} + ... + a_{n/2}) x^{n/2} + (a_{n/2-1}x^{n/2-1} + ... + a_2 x^2 + a_1 x + a_0)

= P_1 x^{n/2} + P_0

■ Q = Q_1 x^{n/2} + Q_0

■ P•Q = (P_1x^{n/2} + P_0)(Q_1x^{n/2} + Q_0)

= P_1Q_1x^{n} + (P_1Q_0 + P_0Q_1)x^{n/2} + P_0Q_0

■ 4 sub-problems of size n/2 + plus linear combining

■ T(n)=4T(n/2)+cn

■ Solution T(n) = O(n^2)
```

Karatsuba's Algorithm

- A better way to compute the terms
 - Compute
 - IP_0Q_0
 - I P₁Q₁
- $I_1(P_1+P_0)(Q_1+Q_0)$ which is $P_1Q_1+P_1Q_0+P_0Q_1+P_0Q_0$
 - I Then
 - $P_0Q_1+P_1Q_0 = (P_1+P_0)(Q_1+Q_0) P_0Q_0 P_1Q_1$
 - 3 sub-problems of size n/2 plus O(n) work
 - T(n) = 3 T(n/2) + cn
 - I $T(n) = O(n^{\alpha})$ where $\alpha = log_2 3 = 1.59...$

14