CSE 417: Algorithms and
Computational Complexity

Winter 2001
Lecture 13
Instructor: Paul Beame

All-pairs shortest paths

If no negative-weight edges and sparse
graphs run Dijsktra from each vertex
O(nm log n)

What about other cases?

Floyd’s Algorithm Idea

Interior vertices in a path

L)
interior vertices

Dijsktra’s Algorithm
at each step always computed shortest paths that
only had interior vertices from a set S at each step
Floyd’s Algorithm
slowly add interior vertices on fixed schedule rather
than depending on the graph

Floyd’s Algorithm

Vertices V={v,,...,v, }

Let D,[i,j] = length of shortest path from v,
to v; that only allows {v,,...,v,}
as interior vertices

Note

Dy[i,j] ={weight of edge (v;,v;) if (v;,v)UE
e if (vi,v))OE

D,[i,j] = length of shortest path from v; to v

Floyd’s Algorithm

Computing D,Jij] M @ °
i V,

1
vertices from vy,...,v,

Case 1: v, not used

Dilil =Dealill ;

vertices from vy,...,V,.;

Floyd’s Algorithm

Case 2: v, used

vertices from vy,...,V,.;

vertices from v,,...,v, vertices from v,,....Viy

Floyd’s Algorithm

Case 2: v, used

k1
not on shortest path
. since no negative cycles

g o
L2

v, v _ Vi

vertices from v,,...,vy vertices from v,,....Viy

Floyd’s Algorithm

Case 2: v, used

Dyfi.j] = Diali,K] + Dycalk]

vertices from v,,...,vy vertices from v,,....Viy

Floyd’s Algorithm

O(n3) time
Floyd(©) Pt et
D, —weight matrix of G
for k=1to ndo
fori=1to ndo
fori=1to ndo
Dyli,jl— min{ D, 4[i,j].
Dyo[i.K]+Dy 4y [K,j]}
endfor
endfor
endfor .

Note on Polynomials

These are just formal sequences of
coefficients so when we show something
multiplied by xk it just means shifted k places
to the left

Multiplying Faster

On the first HW you analyzed our usual
algorithm for multiplying numbers
O(n2) time

We can do better!

We'll describe the basic ideas by multiplying
polynomials rather than integers

Advantage is we don't get confused by
worrying about carries at first

Polynomial Multiplication

Given:
Degree n-1 polynomials P and Q
P=a, x"t+a.,x"2+. ... +a,xX>+a, Xx+a,
Q =b, X"+ b ,x"2+ ... +b,x2+b, x+b,
Compute:
Degree 2n-2 Polynomial P+ Q
PeQ=a, b, X2"2 + (a,,b,,+a,,0,,) X*"3 + ..
+ (@pqbiitan bt b) X+ L+ aghy
Obvious Algorithm:
Compute all ajb; and collect terms
O (n?) time

Naive Divide and Conquer

Assume n is a power of 2
P= (an_lxn/Z-l + an_zxn/2-2 + ...+ an/2) Xn/2
+ (@ XML+ L+ @, X2+ ag X +ag)
=P, X2+ Py
Q=0Q; x"2+Q,
PeQ = (Px"2+P)(Qx"2+Qp)
= P1Qx"+(P1Qp+PQ)X"2+PoQq

4 sub-problems of size n/2 + plus linear combining
T(n)=4T(n/2)+cn
Solution T(n) = O(n?)

Karatsuba’s Algorithm

A better way to compute the terms
Compute
PoQo
PQ,
(P1+Po)(Q1+Qp) which is P;Q;+P;Qo+PyQ1+PQy
Then
PoQ1+P1Qp = (P1+P4)(Q1+Qo) - PoQo - P1Qy
3 sub-problems of size n/2 plus O(n) work
T(n) =3 T(n/2) +cn
T(n) = O(n®) where a =log,3 = 1.59...

