CSE 417: Algorithms and
Computational Complexity

Winter 2001
Lecture 12
Instructor: Paul Beame

Single-source shortest paths

Given an (un)directed graph G=(V,E) with each
edge e having a weight w(e) and a vertex v

Find length of shortest paths from v to each
vertex in G

-o0 if there is a (directed) cycle with negative weight
go around the cycle over and over

Assume first that there are no negative cost edges

A greedy algorithm

Dijkstra’s Algorithm:
Maintain a set S of vertices whose shortest paths are
known
initially S={v}
Maintaining current best lengths of paths that only go
through S to each of the vertices in G
path-lengths to elements of S will be right, to V-S they might
not be right
Repeatedly add vertex u to S that has the shortest
path-length of any vertex in V-S
update path lengths based on new paths through u

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Addto S

)

7 .

1 o

i9

4@
@ 5.

Dijkstra’s Algorithm

Update distances 2/C®4




Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm




Dijkstra’s Algorithm

Addto S

Dijkstra’s Algorithm

Update distances 2

1 T 8

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Update distances 2

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Update distances 2




Dijkstra’s Algorithm

Dijkstra’s Algorithm

Update distances 2

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Update distances 2

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Update distances 2




Dijkstra’s Algorithm

Addto S

Dijkstra’s Algorithm

Update distances 2

Dijkstra’s Algorithm

Dijkstra’s Algorithm
Correctness

Suppose all distances to vertices in S are correct
and u has smallest current value in V-S
Odistance value of vertex in V-S=length of shortest path from v
with only last edge leaving S

Suppose some other
path to u and x= first vertex
on this path notin S

d(u)< d(x)
x-u path length = 0
O other path is longer

Therefore adding u to S keeps correct distances y

Dijkstra’s Algorithm

Algorithm also produces a tree of shortest
paths to v

From w follow its ancestors in the tree back
tov

If all you care about is the shortest path
from v to w simply stop the algorithm
when w is added to S

Implementing Dijkstra’s
Algorithm

Need to
keep current distance values for nodes in V-S
find minimum current distance value
reduce distances when vertex moved to S

Same operations as priority queue version of
Prim'’s Algorithm
only difference is rule for updating values
node value + edge-weight vs edge-weight alone

same run-times as Prim’s Algorithm O(m log n)
30




Topological Sort

Given: a directed acyclic graph (DAG)G=(V,E)
Output: numbering of the vertices of G with

distinct numbers from 1 to n so edges only go
from lower number to higher numbered vertices

Applications
nodes represent tasks
edges represent precedence between tasks
topological sort gives a sequential schedule
for solving them

Directed Acyclic Graph

AN\

O
y

e

%

Topological Sort

Can do using DFS (see book)

Alternative simpler idea:
Any vertex of in-degree 0 can be given
number 1 to start

Remove it from the graph and then give a
vertex of in-degree 0 number 2, etc.

Topological Sort

Topological Sort

Topological Sort




Topological Sort

Topological Sort

Topological Sort

Topological Sort

Topological Sort

Topological Sort




Topological Sort

43

Topological Sort

Topological Sort

‘
45

Topological Sort

Topological Sort

47

Implementing Topological Sort

Go through all edges, computing in-degree for
eachvertex O(m+n)

Maintain a queue (or stack) of vertices of
in-degree 0
Remove any vertex in queue and number it

When a vertex is removed, decrease in-degree
of each of its neighbors by 1 and add them to
the queue if their degree drops to 0

Total cost O(m+n)




