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Control Unit for Multiple Cycle
Implementation

« Control is more complex than in single cycle since:
— Need to define control signals for each step
— Need to know which step we are on

« Two methods for designing the control unit

— Finite state machine and hardwired control (extension of the
single cycle implementation)

— Microprogramming (read the book about it)
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What are the control signals needed?

« Let’s look at control signals needed at each of 5
steps
« Signals needed for
— reading/writing memory
— reading/writing registers
— control the various muxes

— control the ALU (recall how it was done for single cycle
implementation)
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Control Signals for Multicycle MIPS
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Complete Multi-cycle MIPS
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Instruction fetch

* Need to read memory
— Choose input address (mux with signal /orD = 0)
— Set MemRead signal
— Set IRwrite signal (note that there is no write signal for
MDR; Why?)
« Set sources for ALU
— Source 1: mux set to “come from PC” (signal ALUSrcA = 0)
— Source 2: mux set to “constant 4” (signal ALUSrcB = 01)

« Set ALU control to “+” (e.g., ALUop = 00 and don’t
care for the function bits)
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Instruction fetch (PC increment)

« Set the mux to store in PC as coming from ALU
(signal PCsource = 01)

 Set PCwrite

— Note: this could be wrong if we had a branch but it will be
overwritten in that case; see step 3 of branch instructions

10/25/2005 CSE378 Multicycle impl,. 7



Instruction decode and read source
registers

 Read registers in Aand B

— No need for control signals. This will happen at every cycle.
No problem since neither IR (giving names of the registers)
nor the registers themselves are modified. When we need A
and B as sources for the ALU, e.qg., in step 3, the muxes will
be set accordingly
» Branch target computations. Select inputs for ALU
— Source 1: mux set to “come from PC” (signal ALUSrcA = 0)

— Source 2: mux set to “come from IR, sign-extended, shifted
left 27 (signal ALUSreB = 117)

« Set ALU control to “+" (ALUop = 00)
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Concept of “state”

* During steps 1 and 2, all instructions do the same
thing
* At step 3, opcode is directing

— What control lines to assert (it will be different for a load, an
add, a branch etc.)

— What will be done at subsequent steps (e.g., access
memory, writing a register, fetching the next instruction)

« At each cycle, the control unit is put in a specific
state that depends only on the previous state and the

opcode

— (current state, opcode) — (next state) Finite state machine
(cf. CSE370, CSE 322)
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The first two states

« Since the data flow and the control signals are the
same for all instructions in step 1 (instr. fetch) there
IS only one state associated with step 1, say state 0

* And since all operations in the next step are also
always the same, we will have the transition
— (state O, all) — (state 1)
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Customary notation

Instruction decode and

Instruction fetch read source registers

(state 0) (state 1)

Memread
ALUSrcA=0

TorD =0 ALUSrcA = 0

ALUsrcB =11
ALUop =00

[rwrite
ALUsrcB =01
ALUop =00

No label because transition
is always taken

Pcwrite

Pcsource = 00

10/25/2005 CSE378 Multicycle impl,. 11



Transitions from State 1

« After the decode, the data flow depends on the type
of instructions:

Register-Register : Needs to compute a result and store it

Load/Store: Needs to compute the address, access
memory, and in the case of a load write the result register

Branch: test the result of the condition and, if need be,
change the PC

Jump: need to change the PC
Immediate: Not shown in the figures. Do it as an exercise
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Start

10/25/2005

State transitions from State 1

State 0 State 1

OPCOde ~er
(&

Opcode “Mem op

'R-R.” Opcede “branch.*~ Opcode “jump.”

State 2
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State 2: Memory Address Computation

 Set sources for ALU

— Source 1: mux set to “come from A” (signal ALUSrcA = 1)

— Source 2: mux set to “imm. extended” (signal ALUSrcB =
10)

« Set ALU control to “+” (ALUop = 00)

 Transition from State 2
— If we have a “load” transition to State 3
— If we have a “store” transition to State 5
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State 2: Memory address computation

ALUSrcA =1
ALUSrcB =10
ALUop =00

State 2

Opcode “load” Opcode “store”

State 5

10/25/2005 CSE378 Multicycle impl,. 15



One more example: State 5 --Store

* The control signals are:

— Set mux for address as coming from ALUout (/orD = 1)
— Set MemWrite

— Note that what has to be written has been sitting in B all that
time (and was rewritten, unmodified, at every cycle).

« Since the instruction is completed, the transition from
State 5 is always to State 0O to fetch a new
Instruction.

— (State 5, always) — (State 0)
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Multiple Cycle
Implementation

* |Immediate
instructions
are not here
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Hardwired implementation of the control
unit

« Single cycle implementation:
— Input (Opcode) = Combinational circuit (PAL) = Output
signals (data path)
— Input (Opcode + function bits) = ALU control

* Multiple cycle implementation
— Need to implement the finite state machine
— Input (Opcode + Current State -- stable storage) =
Combinational circuit (PAL) = Output signals (data path +
setting next state)
— Input (Opcode + function bits + Current State) = ALU
control
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