FloorPlan for Multicycle MIPS

E Instniction il
u = Addrass [25-21]
3 Instracticn
o Memory [20-16) = -
MamData = oo otinn i M AL LIt =
[15-0] | |nstruction| U —-
| WWite 511 | X
data Instruction 1)
fegigier D
Instruction M
[15-0) ~
o
Mamary 16
— datm = "1
regiatar
E
10/25/2005 CSE378 Multicycle impl,.

Control Unit for Multiple Cycle
Implementation

« Control is more complex than in single cycle since:
— Need to define control signals for each step
— Need to know which step we are on

« Two methods for designing the control unit

— Finite state machine and hardwired control (extension of the
single cycle implementation)

— Microprogramming (read the book about it)

10/25/2005 CSE378 Multicycle impl,. 2

What are the control signals needed?

« Let’s look at control signals needed at each of 5
steps
« Signals needed for
— reading/writing memory
— reading/writing registers
— control the various muxes

— control the ALU (recall how it was done for single cycle
implementation)

10/25/2005 CSE378 Multicycle impl,. 3

Control Signals for Multicycle MIPS

iorD MamFead MemWris IFWns Raghst FagiWra ALLISrcA
PG “I Instruction | Faad rﬁ.;‘
N e gﬂh}
1 Instruction _ 3
W Memaory [20-16] = F!.ré:jlarﬂ i Zang =
MomData fgel | cion | A Registers >‘“—” AL ALLIOW -
115-0] | |nstruction| u —{ Wie Asad mesult iRt
| Wit E{1) | X | TEBLET o e]
daka Inatrusction 1. l| H |~
rql.“ "ﬁ Wrile
=+ daila
1 X ;
I""!—"" flr‘/'-'_ N\Illl
Memary 16 | P | &2 e
o data | # I I"“"" ot 2] oA
regiater I'n,'. | "'-._q__;)'l control
o .
Instrusstian [5-0] ‘
I
KMemioHag ALUScE ALLIDp
10/25/2005 CSE378 Multicycle impl,. 4

Complete Multi-cycle MIPS

PEWRaCondg PCSource
PCWIran EIJIFJIE- L ALUO
ol ALUSHE
MernFpad | Coaninol
Pl | e
FlurmicHng [E&“ | Fegirite ol
IFWTiin Faagiisl 0
e Jump i M
Shift address I
Instrictian [25-0] 26 | 28 [31-0]
ledt 2 '..1‘ 2 _,.-'I
Irstruetian i T i
126 L | Pcitesl
PC I:||,| Inssruction FAead e
u = Adress [25-21] register 1 o 7 E -
b — ro
1 Inssruction gaia
L | memory [29-16] [T+ T—=="" regiser 2 et] |
MamData instruction | = Aegisters }""I'“ ALY | ALLICUL &
ME-0] | [instructicn | u ﬂ::w Read | [2™ f'ff'ﬂ
Wirije 511 i 1
[Ingtructhsn | =1 e e i d=l 1M || [
Feqiater -’ﬁ. el 9 :
Ingiruchion 3
[15-a] S — e
I— 1 .frr’- \'\I ;
Ve s | sgn 12| feum\l| —f au]
ml-t-_r | axiend] baft 2 EI:II'I'II'-l:I'I-
Instruction [5-0]
10/25/2005 CSE378 Multicycle impl,. 5

Instruction fetch

* Need to read memory
— Choose input address (mux with signal /orD = 0)
— Set MemRead signal
— Set IRwrite signal (note that there is no write signal for
MDR; Why?)
« Set sources for ALU
— Source 1: mux set to “come from PC” (signal ALUSrcA = 0)
— Source 2: mux set to “constant 4” (signal ALUSrcB = 01)

« Set ALU control to “+” (e.g., ALUop = 00 and don’t
care for the function bits)

10/25/2005 CSE378 Multicycle impl,. 6

Instruction fetch (PC increment)

« Set the mux to store in PC as coming from ALU
(signal PCsource = 01)

 Set PCwrite

— Note: this could be wrong if we had a branch but it will be
overwritten in that case; see step 3 of branch instructions

10/25/2005 CSE378 Multicycle impl,. 7

Instruction decode and read source
registers

 Read registers in Aand B

— No need for control signals. This will happen at every cycle.
No problem since neither IR (giving names of the registers)
nor the registers themselves are modified. When we need A
and B as sources for the ALU, e.qg., in step 3, the muxes will
be set accordingly
» Branch target computations. Select inputs for ALU
— Source 1: mux set to “come from PC” (signal ALUSrcA = 0)

— Source 2: mux set to “come from IR, sign-extended, shifted
left 27 (signal ALUSreB = 117)

« Set ALU control to “+" (ALUop = 00)

10/25/2005 CSE378 Multicycle impl,. 8

Concept of “state”

* During steps 1 and 2, all instructions do the same
thing
* At step 3, opcode is directing

— What control lines to assert (it will be different for a load, an
add, a branch etc.)

— What will be done at subsequent steps (e.g., access
memory, writing a register, fetching the next instruction)

« At each cycle, the control unit is put in a specific
state that depends only on the previous state and the

opcode

— (current state, opcode) — (next state) Finite state machine
(cf. CSE370, CSE 322)

10/25/2005 CSE378 Multicycle impl,. 9

The first two states

« Since the data flow and the control signals are the
same for all instructions in step 1 (instr. fetch) there
IS only one state associated with step 1, say state 0

* And since all operations in the next step are also
always the same, we will have the transition
— (state O, all) — (state 1)

10/25/2005 CSE378 Multicycle impl,. 10

Customary notation

Instruction decode and

Instruction fetch read source registers

(state 0) (state 1)

Memread
ALUSrcA=0

TorD =0 ALUSrcA = 0

ALUsrcB =11
ALUop =00

[rwrite
ALUsrcB =01
ALUop =00

No label because transition
is always taken

Pcwrite

Pcsource = 00

10/25/2005 CSE378 Multicycle impl,. 11

Transitions from State 1

« After the decode, the data flow depends on the type
of instructions:

Register-Register : Needs to compute a result and store it

Load/Store: Needs to compute the address, access
memory, and in the case of a load write the result register

Branch: test the result of the condition and, if need be,
change the PC

Jump: need to change the PC
Immediate: Not shown in the figures. Do it as an exercise

10/25/2005 CSE378 Multicycle impl,. 12

Start

10/25/2005

State transitions from State 1

State 0 State 1

OPCOde ~er
(&

Opcode “Mem op

'R-R.” Opcede “branch.*~ Opcode “jump.”

State 2

CSE378 Multicycle impl,.

13

State 2: Memory Address Computation

 Set sources for ALU

— Source 1: mux set to “come from A” (signal ALUSrcA = 1)

— Source 2: mux set to “imm. extended” (signal ALUSrcB =
10)

« Set ALU control to “+” (ALUop = 00)

 Transition from State 2
— If we have a “load” transition to State 3
— If we have a “store” transition to State 5

10/25/2005 CSE378 Multicycle impl,. 14

State 2: Memory address computation

ALUSrcA =1
ALUSrcB =10
ALUop =00

State 2

Opcode “load” Opcode “store”

State 5

10/25/2005 CSE378 Multicycle impl,. 15

One more example: State 5 --Store

* The control signals are:

— Set mux for address as coming from ALUout (/orD = 1)
— Set MemWrite

— Note that what has to be written has been sitting in B all that
time (and was rewritten, unmodified, at every cycle).

« Since the instruction is completed, the transition from
State 5 is always to State 0O to fetch a new
Instruction.

— (State 5, always) — (State 0)

10/25/2005 CSE378 Multicycle impl,. 16

Multiple Cycle
Implementation

* |Immediate
instructions
are not here

10/25/2005

f;meFl-eadH e
4] AllUSmaA =0 ‘-._ 1 __,-f'" i
kD=0
| IRWrite AI.UBN'.H =10 |
St ———— ALLISHE = 01 I—-ll ALUSEE = 11
II| AL'..:‘]‘I IJ'I]'
KMomory add Jump
COmputa Exaoulion aorgHenon complon
o i - = e
ff.l-l.ua-t.ﬂ. ' {u_lm 1 / H"
‘ 1 f Y [PCWie |
| ALUSreB - 10 I | ALLSE = 00 |7t ﬁ:ﬁ n_l:.lﬂ | | PCSaurce = 1|]|
\, ALUOp =00 ; ', ALUDp - "i),f | PCWieCand |
o - .“'% \.____ I' PCSourcs = 01 ."

g E t% e / —l_—...
[Mamary ".-'-_'" ory
ﬁ e, ! | & mpatian

N N

' Memﬁmu L[Memite I,' Aeghat=1

FagiWrite
Y,] J.-" R g |, Memiofiag=0 |
_ " K‘w.___--/ x“‘k__ _____-'-"I‘)
Iamary riad
completon sha
7
|/;ﬂ-ﬂﬁtl1 \lll
| RegWirite | L
n\iwb:lﬂau-ﬂf.'
i

CSE378 Multicycle impl,. 17

Hardwired implementation of the control
unit

« Single cycle implementation:
— Input (Opcode) = Combinational circuit (PAL) = Output
signals (data path)
— Input (Opcode + function bits) = ALU control

* Multiple cycle implementation
— Need to implement the finite state machine
— Input (Opcode + Current State -- stable storage) =
Combinational circuit (PAL) = Output signals (data path +
setting next state)
— Input (Opcode + function bits + Current State) = ALU
control

10/25/2005 CSE378 Multicycle impl,. 18

