
10/05/2005 CSE378 Instr. encoding. 1

Instruction encoding
• The ISA defines

– The format of an instruction (syntax)
– The meaning of the instruction (semantics)

• Format = Encoding
– Each instruction format has various fields
– Opcode field gives the semantics (Add, Load etc …)
– Operand fields (rs,rt,rd,immed) say where to find inputs

(registers, constants) and where to store the output

10/05/2005 CSE378 Instr. encoding. 2

MIPS Instruction encoding

• MIPS = RISC hence
– Few (3+) instruction formats

• R in RISC also stands for “Regular”
– All instructions of the same length (32-bits = 4 bytes)
– Formats are consistent with each other

• Opcode always at the same place (6 most significant bits)
• rd and rs always at the same place
• immed always at the same place etc.

10/05/2005 CSE378 Instr. encoding. 3

I-type (Immediate) Instruction Format

• An instruction with the immediate format has the
SPIM form
Opcode Operands Comment
Addi $4,$7,78 #$4 = $7 + 78

• Encoding of the 32 bits
– Opcode is 6 bits
– Each register “name” is 5 bits since there are 32 registers
– That leaves 16 bits for the immediate constant

opcode rs rt immediate

6 5 5 16

10/05/2005 CSE378 Instr. encoding. 4

I-type Instruction Example

 Addi $a0,$12,33 # $a0 is also $4 = $12 +33
 # Addi has opcode 08

In binary: 0010 0001 1000 0100 0000 0000 0010 0001
In hex: 21840021

opcode rs rt immediate

6 5 5 16

8 12 4 33

10/05/2005 CSE378 Instr. encoding. 5

Sign extension

• Internally the ALU (adder) deals with 32-bit numbers
• What happens to the 16-bit constant?

– Extended to 32 bits

• If the Opcode says “unsigned” (e.g., Addiu)
– Fill upper 16 bits with 0’s

• If the Opcode says “signed” (e.g., Addi)
– Fill upper 16 bits with the msb of the 16 bit constant

• i.e. fill with 0’s if the number is positive
• i.e. fill with 1’s if the number is negative

10/05/2005 CSE378 Instr. encoding. 6

R-type (register) format

• Arithmetic, Logical, and Compare instructions require
encoding 3 registers.

• Opcode (6 bits) + 3 registers (5x3 =15 bits) => 32 -21
= 11 “free” bits

• Use 6 of these bits to expand the Opcode
• Use 5 for the “shift” amount in shift instructions

Opc rs rt rd shft func

10/05/2005 CSE378 Instr. encoding. 7

R-type (Register) Instruction Format

• Arithmetic, Logical, and Compare instructions require
encoding 3 registers.

• Opcode (6 bits) + 3 registers (5x3 =15 bits) => 32 -21
= 11 “free” bits

• Use 6 of these bits to expand the Opcode
• Use 5 for the “shift” amount in shift instructions

opcode rs rt rd shft funct

6 5 5 5 5 6

10/05/2005 CSE378 Instr. encoding. 8

R-type example

Sub $7,$8,$9

Opc =0 & funct = 34
rs rt rd

 0 8 9 7 0 34

Unused bits

10/05/2005 CSE378 Instr. encoding. 9

Load and Store instructions

• MIPS = RISC = Load-Store architecture
– Load: brings data from memory to a register
– Store: brings data back to memory from a register

• Each load-store instruction must specify
– The unit of info to be transferred (byte, word etc.) through

the Opcode
– The address in memory

• A memory address is a 32-bit byte address
• An instruction has only 32 bits so ….

10/05/2005 CSE378 Instr. encoding. 10

Addressing in Load/Store instructions

• The address will be the sum
– of a base register (register rs)
– a 16-bit offset (or displacement) which will be in the immed

field and is added (as a signed number) to the contents of
the base register

• Thus, one can address any byte within ± 32KB of the
address pointed to by the contents of the base
register.

10/05/2005 CSE378 Instr. encoding. 11

Examples of load-store instructions

• Load word from memory:
 LW rt,rs,offset #rt = Memory[rs+offset]
• Store word to memory:
 SW rt,rs,offset #Memory[rs+offset]=rt

• For bytes (or half-words) only the lower byte (or half-word) of a
register is addressable
– For load you need to specify if data is sign-extended or not
LB rt,rs,offset #rt =sign-ext(Memory[rs+offset])
LBU rt,rs,offset #rt =zero-ext(Memory[rs+offset])
SB rt,rs,offset #Memory[rs+offset]= least signif.

 #byte of rt

10/05/2005 CSE378 Instr. encoding. 12

Load-Store format

• Need for
– Opcode (6 bits)
– Register destination (for Load) and source (for Store) : rt
– Base register: rs
– Offset (immed field)

• Example
 LW $14,8($sp) #$14 loaded from top

of #stack + 8

 35 29 14 8

10/05/2005 CSE378 Instr. encoding. 13

Loading small constants in a register

• If the constant is small (i.e., can be encoded in 16
bits) use the immediate format with LI (Load
Immediate)

 LI $14,8 #$14 = 8
• But, there is no opcode for LI!
• LI is a pseudoinstruction

– The assembler creates it to help you
– SPIM will recognize it and transform it into Addi (with sign-

extension) or Ori (zero extended)

 Addi $14,$0,8 #$14 = $0+8

10/05/2005 CSE378 Instr. encoding. 14

Loading large constants in a register

• If the constant does not fit in 16 bits (e.g., an
address)

• Use a two-step process
– LUI (load upper immediate) to load the upper 16 bits; it will

zero out automatically the lower 16 bits
– Use ORI for the lower 16 bits (but not LI, why?)

• Example: Load constant 0x1B234567 in register $t0
 LUI $t0,0x1B23 #note the use of hex

constants
 ORI $t0,$t0,0x4567

10/05/2005 CSE378 Instr. encoding. 15

How to address memory in assembly
language

• Problem: how do I put the base address in the right register and
how do I compute the offset?

• Method 1 (recommended). Let the assembler do it!

 .data #define data section

xyz: .word 1 #reserve room for 1 word at address xyz
 …….. #more data

 .text #define program section

 ….. # some lines of code
 lw $5, xyz # load contents of word at add. xyz in $5

• In fact the assembler generates:
 LW $5, offset ($gp) #$gp is register

28

10/05/2005 CSE378 Instr. encoding. 16

Generating addresses

• Method 2. Use the pseudo-instruction LA (Load
address)

 LA $6,xyz #$6 contains address of
xyz

 LW $5,0($6) #$5 contains the contents of xyz
– LA is in fact LUI followed by ORI
– This method can be useful to traverse an array after loading

the base address in a register

• Method 3
– If you know the address (i.e. a constant) use LI or LUI + ORI

10/05/2005 CSE378 Instr. encoding. 17

Flow of Control -- Conditional branch
instructions

• You can compare directly
– Equality or inequality of two registers
– One register with 0 (>, <, ≥, ≤)

• and branch to a target specified as
– a signed displacement expressed in number of instructions

(not number of bytes) from the instruction following the
branch

– in assembly language, it is highly recommended to use
labels and branch to labeled target addresses because:

• the computation above is too complicated
• some pseudo-instructions are translated into two real

instructions

10/05/2005 CSE378 Instr. encoding. 18

Examples of branch instructions

 Beq rs,rt,target #go to target if rs = rt
 Beqz rs, target #go to target if rs = 0
 Bne rs,rt,target #go to target if rs != rt
 Bltz rs, target #go to target if rs < 0
 etc.
but note that you cannot compare directly 2 registers for <, >

…

10/05/2005 CSE378 Instr. encoding. 19

Comparisons between two registers

• Use an instruction to set a third register
slt rd,rs,rt #rd = 1 if rs < rt else rd = 0
sltu rd,rs,rt #same but rs and rt are considered unsigned

• Example: Branch to Lab1 if $5 < $6
slt $10,$5,$6 #$10 = 1 if $5 < $6 otherwise $10 = 0
bnez $10,Lab1 # branch if $10 =1, i.e., $5<$6

• There exist pseudo instructions to help you!
blt $5,$6,Lab1 # pseudo instruction translated into
 # slt $1,$5,$6
 # bne $1,$0,Lab1
Note the use of register 1 by the assembler and the fact that

computing the address of Lab1 requires knowledge of how
pseudo-instructions are expanded

10/05/2005 CSE378 Instr. encoding. 20

Unconditional transfer of control

• Can use “beqz $0, target”
– Very useful but limited range (± 32K instructions)

• Use of Jump instructions
j target #special format for target byte address (26

bits)
jr $rs #jump to address stored in rs (good for switch

 #statements and transfer tables)
• Call/return functions and procedures

jal target #jump to target address; save PC of
 #following instruction in $31
(aka $ra)

jr $31 # jump to address stored in $31 (or $ra)

Also possible to use jalr rs,rd #jump to address stored in rs; rd = PC of
 # following instruction in rd with default
rd = $31

