
1

4/14/2004 CSE378 ISA evolution 1

Evolution of ISA’s

• ISA’s have changed over computer “generations” .

• A traditional way to look at ISA complexity encompasses:
– Number of addresses per instruction

– Regularity/size of instruction formats

– Number of addressing types

4/14/2004 CSE378 ISA evolution 2

Number of addresses per instruction

• First computer: 1 memory address + implied accumulator
• Then 1 memory address + “ index” registers (for addressing

operands)
• Followed by 1 memory address + “general registers” (for

addressing and storing operands)
• Then 2 or 3 memory addresses + general registers
• Then N memory addresses + general registers (VAX)
• Also “0-address” computers, or “stack computers”
• In which category is MIPS, and more generally RISC

machines?

4/14/2004 CSE378 ISA evolution 3

Addresses per instruction

• RISC machines
– Load-store and branches: 1 memory address + 2 registers

– All other 3 registers or 2 registers + immediate

• CISC machines
– Most of them: Two addresses

(destination ← source op. destination)

– One operand is a register; other is either register, immediate, or
given by memory address

– Some special instructions (string manipulation) can have two
memory addresses

4/14/2004 CSE378 ISA evolution 4

Regularity of instruction formats

• Started with fixed format (ease of programming in
“machine language”; few instructions)

• Then more flexibility (assembler/compiler): three or four
instruction formats, not necessarily the same length

• Then strive for memory compactness. Complex, powerful,
variable length instructions (x86)

• Back to regular instruction sets: few formats, instructions
of the same length (memory is cheap; instructions must be
decoded fast)

4/14/2004 CSE378 ISA evolution 5

Number of instruction formats

• RISC: three or four (instructions have same length)

• CISC
– Several formats, each of fixed (but maybe different) length

– Variable length instructions (depends on opcode, addressing of
operands etc. Intel x86 instructions from 1 to 17 bytes)

• Instruction encoding via “ specifiers”

4/14/2004 CSE378 ISA evolution 6

Addressing modes

• In early machines: immediate, direct, indirect

• Then index registers

• Then index + base (sum of 2 registers instead of -- or in
addition to -- index +displacement)

• All kinds of additional modes (indirect addressing, auto-
increment, combinations of the above etc.)

• In general RISC
– Immediate, indexed, and sometimes index + base (IBM Power PC)

• CISC
– Anything goes...

2

4/14/2004 CSE378 ISA evolution 7

The Ultimate CISC - VAX-11

• ISA defined late 70’s. Last product mid 80’s

• Over 200 instructions
– Some very powerful: “polynomial evaluation” , procedure calls

with register saving and frame set-up etc

• Complex addressing modes

4/14/2004 CSE378 ISA evolution 8

A sample of VAX addressing modes

• Immediate (with even some small f-p constants)

• Direct (register) One instruction for each I-unit type

• Indirect (deferred)

• Autodecrement (and autoincrement) . The register is
incremented by the I-unit type before (after) the operand is
accessed

• Displacement (like MIPS indexed)

• Index like displacement but offset depends on the I-unit

• Combination of the above and more

4/14/2004 CSE378 ISA evolution 9

Examples

• CLRL register (clears a whole register)

• CLRB register (clears the low byte of the register)

• CLRL (register) clears memory add whose add. is in reg.

• CLRL (register)+ as above but then register is incr. by 4

• CLRL @(register)+ as above with 1 more level of
indirection (register points to address of address)

• CLRL offset(register) offset mult.by 4 for L, by 1 for B etc

• CLRL offset[register] similar but use offset + 4 * register

• CLRL 12(R4)+[R1] clear word at add. R4 + 12*4 + R1*4
and add 4 to R4

4/14/2004 CSE378 ISA evolution 10

Intel x86: the largest number of CPU’s in the
world

• ISA defined early 80’s

• Compatibility hurts:
– 16 to 32-bit architecture (64-bit has been announced)

– Paucity of general-purpose registers -- only 8

• Addressing relies on segments (code, data, stack)

• Lots of different instruction formats

• Lots of addressing modes (less than the Vax though)

• But … over 400(?) millions CPU’s in the world and
growing
– 90% (?)of the market i f you don’ t count embedded processors

4/14/2004 CSE378 ISA evolution 11

X86 instruction encoding

• Opcode1 or 2 bytes (defined by one bit in first byte)

• First byte following opcode is operand specifier
– e.g., 2 registers

– 1 register and the next byte specifies base and index register for a
memory address for second operand and next byte specifies a
displacement etc

– etc.

• No regularity in instruction set

4/14/2004 CSE378 ISA evolution 12

MIPS is not the only RISC

• MIPS family outgrowth of research at Stanford (Hennessy)

• DEC (Compaq,HP) Alpha had its roots in MIPS
– Alas, discontinued

• Sun family outgrowth of research at Berkeley (Patterson)

• IBM Power/PC family outgrowth of research at IBM
Watson (Cocke)

• HP Precision architecture

• more ...

3

4/14/2004 CSE378 ISA evolution 13

Recent trends for high-end servers

• 32-bit architectures become 64-bit architectures
– already in Dec Alpha, some HP-PA, in a future generation of Intel

x86 (now called IA-32)

• A “new” type of instruction format
– VLIW (Very Long Instruction Word) or EPIC (Explicitly Parallel

Instruction Computing)
• Intel-HP Itanium(IA-64)

• Multithreaded architectures (Tera, SMT is a UW
invention; Hyperthreading in some recent Intel processors)

• More than one processor on a chip – CMP (IBM Power 4)
• Embedded systems become “systems on a chip”

4/14/2004 CSE378 ISA evolution 14

Current trends in RISC

• Not that “ restricted”
– instructions for MMX (multimedia)

– instructions for multiprocessing (synchronization, memory
hierarchy)

– instructions for graphics

• Design is becoming more complex

• Execute several instructions at once (multiple ALU’s)
– Speculative execution (e.g., guessbranch outcomes)

– Execute instructions out-of-order

• Ultimate goal is speed

