B Pipelining review

* Pipelining review

Clock Clock Clock Clock Clock Clock Clock
Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Time

> [
e

CTESIENT
instr4 m@.ﬁ

Instructions

* Pipeline Control — big picture

Control
unit ' 1p/Ex

* Pipeline in action

IF
Instruction
memory
CLK :
0x1234 Data
| Memory
Let's execute a program

at address 0x1234:
Iw $1, 4($3)
add $2, $3, $4

or $3, $1, $2 Suppose: $1 = 1, $2 = 2, $3 = 1000, $4 = 6

* Pipeline in action 1

IF ID EX MEM WB
1] [l q
Iw $1, 4($3) 1 i i
ecaeer
Register
fle |y T

o

0x1234

Clock: e

! $1=1,$2=2,$3=1000,$4 =4

* Pipeline in action 2

IF ID EX MEM WB
[l 1l q
add $2, $3, $4] L i
Register
file | e —|

Iw $1, 4($3)

Clock: T
$1=1,9$2=2,$3=1000,%4 =6

* Pipeline in action 3

IF ID . EX MEM wB
or $3, $1, $2 } D
Register [
file 1
LK (€2
0x123C add $2,$3,$4 | Iw$L, 4($3) Data |7
| Memory
Cocki [[~

$1=1,$2 =2, $3 =1000, $4 = 6

* Pipeline in action 4 (anything wrong?)

IF D ‘ EX . MEM WB

Instruction L

memory Register

file

S

0x1240

or§3, 61,42 | adds2, 43,84

‘ Iw $1, 4($3)

Clocki [[0~

1 2 3 4 Let’s assume memory returns 42 for Iw.
$1=1,9$2=2,$3=1000, $4 = 6

* Data Hazards!

IF ID . EX MEM WB

Instruction Register |1
memory ?ile [
ax ®
0x1240 |:
or $3, $T1, $2 i add $2, $3,$4 ¢ W $1, 4($3)
| S ‘

Cock: [[1~

$1=1,$2=2,43=1000,$4=6

* Pipeline in action 5

IF D ‘ EX . MEM

T —

Instruction _H L Register l—.

memory file | I I

o

e

or$3,$1,82 add$2,$3, $4
Clock: EpininEnls $1 and $2 both w $1, 4(53)

wrong for or
because we got old values!

$1=142,$2=2,$3=1000, $4 = 6

* Data Hazards

» Data dependence
» result of an operation needed before it is stored back in reg. file:
Iw $1, 4($3)
add $2, $3, $4
or $3, $1, $2

» The data hazard above is read after write (RAW)

» Data dependence (RAW) occurs when:

» An instruction wants to read a register in stage 2, and

» One instruction in stage 3 or stage 4 is going to write that

register
» Note: if the instruction writing the register is in stage 5, this is fine
since we can write a register and read it in the same cycle
n Hazard detection unit compares register fields across
stages.

* Resolving data dependencies

n Have the compiler generate no-ops
» Don't have to deal with data hazards in hardware.
n Stall the pipeline, i.e., create bubbles
n the resulting delays are the same as for no-ops
n Send the result generated in stage 3 or stage 4
to the appropriate input of the ALU.
n This is forwarding or bypassing.

» More performance at the cost of more hardware

. For one simple pipeline, cost is slightly more control and
extra buses

« For several pipelines, say n, communication grows as O(n?)

* Forwarding from WB to EX

IF D ‘ EX MEM ws

Instruction _U L

memory Register

file
ax &
0x1244
or $3, $1, $2

Clock: EpinEninlE $1 fixed,
5

add $2, §3, §4
$2 still wrong Iw $1, 4($3),

$1=42,$2 =2,$3 = 1000, $4 = 6

* Forwarding from MEM to EX

IF D EX MEM wB

Instruction _H L

memory Register

file

W) @

0x1244

or§3,$1,92 add $2, $3, $4

Clock: [LTI Iw $1, 4($3)

$1=142,$2 = 2,$3 = 1000, $4 = 6

* Generally, need to forward to both inputs!

IF D ‘ EX MEM ws

9

Register I
|
N

Instruction
memory file
ax ®
0x1244

Gock: [[1L

or$3, 8182 462, 43,84
What if we had:

or $3, $1, $1 Iw $1, 4($3)
Need to forward $1 to both ALU inputs
$1=42,$2=2,$3 =1000,$4 =6

* Forwarding a register twice?

» What if had:
« add $1, $2, $2
aor$l, $3, $4
»and $5, $1, $1
n Where do you forward $1 from?

Instructions

* Another look at forwarding...

Clock Clock Clock Clock Clock Clock Clock
Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Time

aESiC

Forward $1

add $2, $3, $4

or $3, $1, $2

* Data hazards and loads

Clock Clock Clock Clock Clock Clock Clock
Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Time

1" Have to insert a
r 162 bubble between Iw
or$3, 41, $ M DM

I_. and or

IWhat if we switch these . .
add $2, $3, $4 I

Sy

® Can't do forwarding
! > in this case: can't
go back in time.

Instructions

* Inserting a bubble

* Have to do it when you load into a register which is used in the next instruction

Clock Clock Clock Clock Clock Clock Clock
Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7

Time

or $3, 61, %2

Rl B R
I] do nothing
add $2, $3, $4 Insert

bubble

Instructions

Other hazards

» We've seen data hazards
» when an instruction in the pipeline is dependent on another
instruction still in the pipeline.
» Resolved by:
 Bypassing/forwarding
o Stalling
n Other types of hazards:
o Structural hazards

» where two instructions at different stages want to use the same
resource.

» Solved by using more resources (e.g., instruction and data memory;
several ALU’s). Won't happen in our pipeline.

n Control hazards
» happens on a taken branch.

» Evaluation of branch condition and calculation of branch target is
not completed before next instruction is fetched.

* Branch path

€2

IF D) EX ~ MEM WwB
instr at L O D I—_I
Register D
file D ALU

==yt
add $2, $3, $4

$1 =42, $2 = 1006, $3 = 1000, $4 = 6

Resolving control hazards

n Stall until result of the condition & target are known

» too slow

n Reduce penalty by redesigning the pipeline:

- move branch calculation to ID stage

» move branch comparison to ID stage
» how to do quick compare?

» use both edges of the clock

n Delay slots

- specify in ISA that instruction after branch is always executed.

» Branch prediction

- in IF stage, guess branch outcome
- correct it if turns out to be wrong.

IF D ‘ EX ~ MEM wB

Instruction
memory

o —

Consider a memory copy

program...

loop: Iw $1, 0($3)
sw$1,0($4) [Too many stalls!

addi $3, $3, 4 How do we fix this?
addi $4, $4, 4

