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* Pipeline Control — big picture

Control
unit ' 1p/Ex
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Let's execute a program

at address 0x1234:
Iw $1, 4($3)
add $2, $3, $4

or $3, $1, $2 Suppose: $1 = 1, $2 = 2, $3 = 1000, $4 = 6

* Pipeline in action 1
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! $1=1,$2=2,$3=1000,$4 =4

* Pipeline in action 2

IF ID EX MEM WB
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Iw $1, 4($3)

Clock: T
$1=1,9$2=2,$3=1000,%4 =6




* Pipeline in action 3

IF ID . EX MEM wB
or $3, $1, $2 } D
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file 1
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0x123C add $2,$3,$4 | Iw$L, 4($3) Data |7
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$1=1,$2 =2, $3 =1000, $4 = 6

* Pipeline in action 4 (anything wrong?)

IF D ‘ EX . MEM WB
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or§3, 61,42 | adds2, 43,84

‘ Iw $1, 4($3)
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1 2 3 4 Let’s assume memory returns 42 for Iw.
$1=1,9$2=2,$3=1000, $4 = 6

* Data Hazards!

IF ID . EX MEM WB
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$1=1,$2=2,43=1000,$4=6

* Pipeline in action 5
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or$3,$1,82  add$2,$3, $4
Clock: EpininEnls $1 and $2 both w $1, 4(53)

wrong for or
because we got old values!

$1=142,$2=2,$3=1000, $4 = 6

* Data Hazards

» Data dependence
» result of an operation needed before it is stored back in reg. file:
Iw $1, 4($3)
add $2, $3, $4
or $3, $1, $2

» The data hazard above is read after write (RAW)

» Data dependence (RAW) occurs when:

» An instruction wants to read a register in stage 2, and

» One instruction in stage 3 or stage 4 is going to write that

register
» Note: if the instruction writing the register is in stage 5, this is fine
since we can write a register and read it in the same cycle
n Hazard detection unit compares register fields across
stages.

* Resolving data dependencies

n Have the compiler generate no-ops
» Don't have to deal with data hazards in hardware.
n Stall the pipeline, i.e., create bubbles
n the resulting delays are the same as for no-ops
n Send the result generated in stage 3 or stage 4
to the appropriate input of the ALU.
n This is forwarding or bypassing.

» More performance at the cost of more hardware

. For one simple pipeline, cost is slightly more control and
extra buses

« For several pipelines, say n, communication grows as O(n?)




* Forwarding from WB to EX

IF D ‘ EX  MEM  ws
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or $3, $1, $2
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add $2, §3, §4
$2 still wrong Iw $1, 4($3),

$1=42,$2 =2,$3 = 1000, $4 = 6

* Forwarding from MEM to EX

IF D EX  MEM  wB
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or§3,$1,92  add $2, $3, $4
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$1=142,$2 = 2,$3 = 1000, $4 = 6

* Generally, need to forward to both inputs!
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What if we had:

or $3, $1, $1 Iw $1, 4($3)
Need to forward $1 to both ALU inputs
$1=42,$2=2,$3 =1000,$4 =6

* Forwarding a register twice?

» What if had:
« add $1, $2, $2
aor$l, $3, $4
»and $5, $1, $1
n Where do you forward $1 from?
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* Another look at forwarding...
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Forward $1

add $2, $3, $4

or $3, $1, $2

* Data hazards and loads
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® Can't do forwarding
! > in this case: can't
go back in time.
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* Inserting a bubble

* Have to do it when you load into a register which is used in the next instruction
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Other hazards

» We've seen data hazards
» when an instruction in the pipeline is dependent on another
instruction still in the pipeline.
» Resolved by:
 Bypassing/forwarding
o Stalling
n Other types of hazards:
o Structural hazards

» where two instructions at different stages want to use the same
resource.

» Solved by using more resources (e.g., instruction and data memory;
several ALU’s). Won't happen in our pipeline.

n Control hazards
» happens on a taken branch.

» Evaluation of branch condition and calculation of branch target is
not completed before next instruction is fetched.

* Branch path
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IF D ) EX ~ MEM  WwB
instr at L O D I—_I
Register D
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add $2, $3, $4

$1 =42, $2 = 1006, $3 = 1000, $4 = 6

Resolving control hazards

n Stall until result of the condition & target are known

» too slow

n Reduce penalty by redesigning the pipeline:

- move branch calculation to ID stage

» move branch comparison to ID stage
» how to do quick compare?

» use both edges of the clock

n Delay slots

- specify in ISA that instruction after branch is always executed.

» Branch prediction

- in IF stage, guess branch outcome
- correct it if turns out to be wrong.
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Consider a memory copy

program...

loop:  Iw $1, 0($3)
sw$1,0($4) [ Too many stalls!

addi $3, $3, 4 How do we fix this?
addi $4, $4, 4




