Single Cycle MIPS Implementation

n All instructions take the same amount of time
» Signals propagate along longest path
» CPI=1
n Lots of operations happening in parallel
» Increment PC
» ALU
» Branch target computation
n Inefficient

Multicycle MIPS Implementation

n Instructions take different number of cycles
» Cycles are identical in length

n Share resources across cycles
» E.g. one ALU for everything
» Minimize hardware

n Cycles are independent across instructions

» R-type and memory-reference instructions do
different things in their 4th cycles

n CPILis 3,4, or 5 depending on instruction

Multicycle versions of various instructions

n R-type (add, sub, etc.) — 4 cycles

1. Read instruction

2. Decode/read registers

3. ALU operation

4. ALU Result stored back to destination register.
n Branch — 3 cycles

1. Read instruction

2. Get branch address (ALU); read regs for comparing.

3. ALU compares registers; if branch taken, update PC

Multicycle versions of various instructions

n Load -5 cycles
1. Read instruction
2. Decode/read registers
3. ALU adds immediate to register to form address
4. Address passed to memory; data is read into MDR
5. Data in MDR is stored into destination register
n Store — 4 cycles
Read instruction
Decode/read registers
ALU adds immediate to a register to form address

Save data from the other source register into memory at
address from cycle 3

EaliE S

Control for new instructions

n Suppose we introduce Iw2r:
0o lw2r $1, $2, $3:

» compute address as $2+$3
» put result into $1.
» In other words: Iw $1, 0($2+$3)

» R-type instruction
» How does the state diagram change?

Control for new instructions

n Suppose we introduce Iw2r:

nolw2r $1, $2, $3:
. compute address as $2+$3
» Load value at this address into $1
« In other words: Iw $1, 0($2+$3)

» R-type instruction

» How does the state diagram change?
» New states: A,B,C

State 1 (op="w) State A StateB State C back to 0

» A controls: ALUOp=00, ALUSrcA=1, ALUSrcB=0
» B controls: MemRead=1, IorD = 1
. C controls: RegDst = 1, RegWrite = 1, MemToReg = 1

Performance

n CPI: cycles per instruction
» Average CPI based on instruction mixes
n Execution time = IC * CPI * C
» Where IC = instruction count; C = clock cycle time
n Performance: inverse of execution time
n MIPS = million instructions per second
» Higher is better
» Amdahl’s Law:

Exec.timeaffectedbyimprovement
Amount of improvement

Exectimeafter improvement = + Exectimeunaffected

Performance Examples

» Finding average CPI:

Instruction Type | Frequency | CPI
load/store 50% 2
jal/jr 8% 2
Branches 8% 3
ALU 34% 1

Performance Examples

» Finding average CPI:

Instruction Type | Frequency | CPI
load/store 50% 2
jal/jr 8% 2
Branches 8% 3
ALU 34% 1

n CPI =0.50*%2 + 0.08*2 + 0.08*3 + 0.34*1

CPI = 1.74

Performance Examples

Instruction Type | Frequency | CPI
load/store 50% 2
jal/jr 8% 2
Branches 8% 3
ALU 34% 1
n CPI=1.74

» Assume a 2GHz P4, with program consisting of

1,000,000,000 instructions.

» Find execution time

Performance Examples

Instruction Type | Frequency | CPI
load/store 50% 2
jal/jr 8% 2
Branches 8% 3
ALU 34% 1

CPI = 1.74, 2GHz P4, 109 instructions.
Execution_time = IC * CPI * Cycletime
= 1079 * 1.74 * 0.5 ns = 0.87 seconds

Performance Examples

» We improve the design and change CPI of load/store

to 1.

Instruction Type | Frequency | CPI
load/store 50% 2
jal/jr 8% 2
Branches 8% 3
ALU 34% 1

» Speedup assuming the same program?

Performance Examples

Instruction Type | Frequency | CPI
load/store 50% 2
jal/jr 8% 2
Branches 8% 3
ALU 34% 1

We improve the design and change CPI of load/store
to 1.

» Speedup assuming the same program/cycle time?

CPI,, = 0.5%1 + 0.08*2 + 0.08*3 + 0.34*1 CPI,_, =
1.24

Speedup = 1.74/1.24 = 1.4

Amdahl’'s Law

Exectimeafter improv _ Bxecti meaffected byimprovement

+ Exectimeunaffected
Amountof improvement

n Suppose I make my add instructions twice as fast.

- Suppose 20% of my program is doing adds

n Speedup?
» What if I make the adds infinitely fast?

Amdahl’'s Law

Exectimeafter improvement = —a&:x:;i??:nﬁrénm
Suppose I make my add instructions twice as fast.
» Suppose 20% of my program is doing adds

Speedup?

+ Exectimeunaffected

New Exectime = old_exectime(4/5 + (1/5)/2) = 9/10 * old_exectime
Speedup = 10/9

What if I make the adds infinitely fast?
Speedup = 5/4, only 20% improvement!

