Paging/Virtual Memory Review

User A: User B:

Virtual Addresses _ TLB Virtual Addr.
00 Physical
Memory [—— Stack

64 MB
f I
- §

[
y

Static Static
A B
caaal/ Page 0 Page —oue
0 Table Table Q

Why virtual memory?

° Protection
« regions of the address space can be read only, execute only ...
° Flexibility

« portions of a program can be placed anywhere in physical
emory, without relocation

° Expandability

« can leave room in virtual address space for objects to grow
° Efficient use of fast storage

« retain only most important portions of the program in memory
° Can run programs larger than size of physical memory

VM.3 Adapted from Patterson CS61C Spring 99 ©UCB

Three Advantages of Virtual Memory

1) Translation:
* Program can be given consistent view of memory, even though
physical memory is scrambled
* Makes multiple processes reasonable
» Only the most important part of program (“Working Set”) must be
in physical memory
» Contiguous structures (like stacks) use only as much physical
memory as necessary yet still grow later
2) Protection:
- Different processes protected from each other
« Different pages can be given special behavior
(Read Only, Invisible to user programs, etc).
» Kernel data protected from User programs
 Very important for protection from malicious programs (viruses)

3) Sharing:
« Can map same physical page to multiple users (“Shared
memory”)
VM.4 Adapted from Patterson CS61C Spring 99 ©UCB

TLB, Page Table

M\?mory lookup slow: TLB to reduce performance cost of

Need more compact representation to reduce memory size
cggt of simple 1-level page table, especially for 64-bit
address

-64 bit address space, 4K pages => 2152 entries in the
page table

Solutions: - Multi-leveled page tables
- Inverted page tables

VM.5 Adapted from Patterson CS61C Spring 99 ©UCB

Comparing the 2 levels of hierarchy
° Cache Version

Virtual Memory Version

° Block or Line Page
° Miss Page Fault

° Block Size: 32-64B

° Placement:
Direct Mapped, =
N-way Set Associative

Page Size: 4K-8KB
Fully Associative

° Replacement: Least Recently Used
LRU or Random (LRU)

° Write Thru or Back Write Back

VM.6 Adapted from Patterson CS61C Spring 99 ©UCB

Picking Page Size

°Minimize wasted storage
— small page minimizes internal fragmentation
— small page increases size of page table, TLB usage
° Minimize transfer time
— large pages (multiple disk sectors) amortize disk access cost
— sometimes transfers unnecessary info
— sometimes prefetches useful data
° General trend toward larger pages because
— big cheap RAM
— increasing memory - disk performance gap
— larger processor address spaces

VM.7 Adapted from Patterson CS61C Spring 99 ©UCB

