
© Larry Snyder 2000, All rights reserved

Branching and Jumping in a Pipeline

The decision to change the next
instruction (branching and jumping)

can possibly cause launched
instructions to be flushed

© Larry Snyder 2000, All rights reserved

Branching Hazard
• A normal pipeline assumes “branch not taken”

• But when there is a branch, instructions must be killed

© Larry Snyder 2000, All rights reserved

Branch Hazard Detection Logic

EA Computation Moved to ID Fast Equality Test

© Larry Snyder 2000, All rights reserved

Reducing the Delay of Branches

• A fast equality test is used to compare the register values
involved in the branch condition rather than a general comparator

– It does not slow down the ID stage much, if at all, which
maintains the cycle time

– The fact that it is an equality test is reflected in the ISA

• This early “execution” of the branch means that only the
instruction following the branch is in the pipeline

– We only need to flush one part of the pipeline

• The branch delay is only 1 cycle! (c.f. 4 cycles on slide 2)

© Larry Snyder 2000, All rights reserved

Dynamic Branch Prediction

• Assuming that a branch is not taken is a crude form of prediction

– If 50% of branches are taken, we will be right 50% of the time

• To do better than this, we can examine past behavior of the
branch to hint what will happen this time

• We maintain a small branch prediction buffer or branch history
table

– The table is indexed by the low order bits of branch instruction
addresses (why not the high order bits?)

– Each entry is a single bit which tells us whether the branch
was taken

• Improves accuracy to 80-90%

© Larry Snyder 2000, All rights reserved

Going Loopy

• Loops cause problems with the previous scheme

• The first and last iteration of a loop will be mispredicted

• If the loop has been executed earlier, then the first time we
encounter the branch instruction, we will predict that it will not be
taken

• On the final iteration, we will predict that the branch will be taken

• To handle this case, we use more than 1 bit of state in our branch
prediction buffer

© Larry Snyder 2000, All rights reserved

2-bit Prediction Scheme

Taken

Taken

Taken

Taken

Not taken

Not taken

Not taken

Not taken

Predict taken Predict taken

Predict not taken Predict not taken

© Larry Snyder 2000, All rights reserved

Delayed Branches

• Make the control hazard an architectural feature

• The instruction following a branch is always executed

• The compiler or assembler has to find an instruction to fill this slot

– If none can be found, a NOP has to be inserted
• The instructions scheduled into the delay slot must

– EITHER always be executed whether the branch is taken or
not

– OR have no side-effects

• Less popular now since longer pipelines and multiple instruction
issue mean the single delay slot does not help as much

• Dynamic predictors have increased in popularity as transistor
density has increased

© Larry Snyder 2000, All rights reserved

Playing the Slots
a. From before b. From target c. From fall through

sub $t4, $t5, $t6

…

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

 sub $t4, $t5, $t6
add $s1, $s2, $s3

if $s1 = 0 then

 sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s2 = 0 then

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6

if $s2 = 0 then

 add $s1, $s2, $s3

