Pipelining

Pipelining is a standard technique for exploiting
parallelism in tasks that are ordered. Two
considerations are: Balancing the step size and
avoiding hazards

Charges for instructions are ...
. . . . —R-format:  30ns
Benefits of Pipelining —Load inst:  40ns
Assume: —Store in_st: 35ns
Memory(10ns), ALU(10ns), Register(5ns),| ~ —Branch:  25ns
All other operations are Ons. ZJump: 10ns
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Decomposing the Fetch/Execute Cycle
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Keeping State In The Pipeline
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