Pipelining

Pipelining is a standard technique for exploiting
parallelism in tasks that are ordered. Two
considerations are: Balancing the step size and
avoiding hazards

Charges for instructions are ...
. . . . —R-format: 30ns
Benefits of Pipelining —Load inst: 40ns
Assume: —Store in_st: 35ns
Memory(10ns), ALU(10ns), Register(5ns),| ~ —Branch: 25ns
All other operations are Ons. ZJump: 10ns
L Il Il Il Il 40 Il Il Il |80 Il L

Single clock

Multicycle clock

Pipelined

Decomposing the Fetch/Execute Cycle

Iw $3, 300($0)

Reg

Reg

(L7

IF: Instruction fetch ID: Instruction decode/ EX: Execute/ MEM: Memory access | WB: Write back
register file read address calculation
Ny
I Read
Po{dos] Address regiter 1 -
read aatat
memory | e memary H
Vwrite g
date
16 Q 32
Time (in clock cycles) >
PG cc1 | ¢cc2 | ¢cc3 | cc4 | occ5 | cce | cc7
execution | | | | | |
order 1 | | 1 | |
(in instructions) : : : : : :
| | | | |
Iw $1, 100($0) IM ; - Reg ! AL ; DM ; Reg : :
1			
'			
Iw $2, 200($0) ! IM ! : Reg{			
	I		
I			
: :			
I			
I			

Keeping State In The Pipeline

= xcz©

IFID ID/EX EXIMEM MEMAB

Read
register 1]
data 1

P Address

Instruction

e
register 2

Registers Read
Wite dataz [
register

Instruction L
Gy Address Read |
Data

memory

Wite
data

Sxcz =

