
CSE 373 Winter 2015 HW05:
Comparing Literary Works with
Hash tables

Due Monday, March 2nd, 11:59 PM

Background

Telling the difference between two different authors has many applications. This
assignment will compare the relative frequency of words in works by William Shake-
speare and Francis Bacon. Before the two works can be analyzed, they will need to
be stored in memory. To do this, we will use two different hashing techniques, one
that utilizes chaining and the other quadratic probing.

Assignment

You are to implement two separate hash tables, one per author, and use them to
store the number of times a word appears in a text-file. You will also write code
that iterates through the hash tables and computes the relative frequency of words
stored in each of the hash tables.

Getting started: The necessary files are available at http://www.cs.washington.
edu/education/courses/cse373/15wi/homework/hw05/hw5files.zip. Included
in this archive are:

• Two text files: hamlet.txt and bacon-essays.txt. Code will be provided to
read these works into arrays and add them to your hash tables. Note: they are
very long. Do not print them.

• FileInput.java: This class provides two functions which read text files into
String arrays. readShakespeare() and readBacon() will return their cor-
responding text files as an array of strings, where each element of the array
represents a word (in order) from the original text.

• Test.java: This is where you will be expected to insert the data into your
hash tables and then compare similarities between the two provided documents.
There are four goals to accomplish in this file.

– Initialize the two hash tables and insert the elements from the
readShakespeare() String array into one hash table and the readBacon()
String array into the other. Keep an associated count for the number of
times a word is added in the hash table.

1

http://www.cs.washington.edu/education/courses/cse373/15wi/homework/hw05/hw5files.zip
http://www.cs.washington.edu/education/courses/cse373/15wi/homework/hw05/hw5files.zip


– Iterate through the elements of one hash table and calculate how fre-
quently that word occurs in both texts by using findCount() of a certain
word divided by the lengths of the arrays from the readShakespeare()

and readBacon() functions in FileInput. Use a squared-error approach.
If a word appears in one text and not in the other, then add the square
of the frequency of that word to the error. If the word appears in both
texts, then find the difference between the two frequencies and add the
square to the total error. For example, if Shakespeare uses a word 0.001
of the time and Bacon uses the same word 0.0001 of the time, subtract
these two frequencies from each other (which would be 0.00099), square
that result and add it to a “total comparative error” variable which keeps
track of the sum of all such events.

– Repeat this process for the second hash table, making sure not to du-
plicate any of the squared-errors you have already added to the “total
comparative error” variable from above. This means you only have to
consider words that are not in the first hash table when calculating for
the second. As a note: the sum from both hash tables should go into the
same variable.

– Print the results. In addition to printing the final “Total comparative
error”, print the word with the highest difference in frequency. For ex-
ample, if Shakespeare uses the word “dog” much more frequently than
Bacon, your final printed result should look like:

Total Square Error: 1.126343843E-4

Most different word: dog

The number provided here is just an example, but you should expect
numbers to be much smaller than one.

• The final files will be your two hash tables: QPHash.java and
ChainingHash.java. Both will be required to support the same functionality,
their only difference will be how they deal with collisions in the hash. Keep in
mind that the differences in hash strategies will cause differences in all of the
functions listed below. These are the functions we expect your hash tables to
support:

– Two constructors: the first instantiates the hash table to a default size
and the other instantiates the hash table to an input size.

– insert(String keyToAdd): This function will add the input string into
your hash table. If the string is already in the hash table, it should increase
the count of that corresponding string. If not, instantialize the count to
one.

– findCount(String keyToFind): This function will return the count for
a particular String key. To be clear, this count variable will be the same
as returning the number of times a particular key has been added to the
hash table.

2



– getNextKey(): Every call of getNextKey() will return the next key in
the hash table. This function should utilize an interior cursor to iterate
through the hash table. This function will be essential when computing
the squared error.

– Computing the hash codes for a string can be done by using the
[insert String variable name].hashCode() system call that is part
of the Java library. However, for extra credit, write a separate hash code
that returns a unique integer for any input String. Also make sure that
the resulting hash distributes Strings evenly over a large range of numbers
or your hash table performance will suffer.

Grading

Submission for this assignment requires three files to be submitted: QPHash.java,
ChainingHash.java and Test.java should be submitted to the dropbox to complete
the homework.

• insert and findCount and getNextKey will be worth 5 points each for both
hash tables, for a total of 30 points.

• Correctly calculating the squared-error and most different word frequency will
be worth 5 points each for a total of 10 points.

• As usual, 5 points will be awarded for clean, well-commented code.

• The extra credit of creating your own hash function will be worth up to 5 points
subject to how well it performs in evenly distributing input Strings.

3


