
CS 373 WINTER 2015:

HW 2 ALGORITHM ANALYSIS

Assigned: January 14, 2015

Due: Paper copy in class by 2:30 PM, January 21, 2015

1 Computing bigO notation (7 pts)

Order the following functions by growth rate. Indicate which functions grow at

the same rates.

N,
√
N,N 1.5, N2, N logN,N log logN,N log2N,

N log(N 2), 2/N, 2N , 2N/2, 37, N2 logN,N3

2 Comparing run-times (18 pts)

For this problem, you will need to write some code in Java. We’ve provided every-

thing you need to get started in the Java skeleton file located at http://www.cs.

washington.edu/education/courses/cse373/15wi/homework/hw02/HW2Prob2.

java

For each of the following six program fragments:

Give an analysis of the running time. Big-Oh will suffice.

Then, implement the code in Java, and give the running time (in milliseconds)

for the several values of n listed in the table below. We’ve set up the skeleton

files to make this easier: Look for an ”INSERT YOUR CODE HERE” comment;

1

http://www.cs.washington.edu/education/courses/cse373/15wi/homework/hw02/HW2Prob2.java
http://www.cs.washington.edu/education/courses/cse373/15wi/homework/hw02/HW2Prob2.java
http://www.cs.washington.edu/education/courses/cse373/15wi/homework/hw02/HW2Prob2.java


that is where you will add your code. The skeleton is set up to read the value of

n from the command line (e.g. java HW2Prob2 1000).

One last note: for some of the code fragments and some values of n the run time

on modern processors is quite long. For those inputs where the the execution

takes over 5 minutes, please stop running the program and write “too long” in

the table.

Big-Oh n=2000 n=2000000 n=2000000000

1

2

3

4

5

6

Finally, using the completed table above, compare your analysis with the actual

running times and discuss.

2



The six fragments:

1. sum = 0;

for (i=0; i<n; i++)

sum++;

2. sum = 0;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

sum++;

3. sum = 0;

for (i=0; i<n; i++)

for (j=0; j<n*n; j++)

sum++;

4. sum = 0;

for (i=0; i<n; i++)

for (j=0; j<i; j++)

sum++;

5. sum = 0;

for (i=0; i<n; i++)

for (j=0; j<i*i; j++)

for (k=0; k<j; k++)

sum++;

6. sum = 0;

for (i=1; i<n; i++)

for (j=1; j<i*i; j++)

if (j % i == 0)

for (k=0; k<j; k++)

sum++;

3 Proving bigO bounds (5 pts)

Show that the function 6n3 + 30n + 403 is O(n3).

You will need to use the formal definition of O(f(n)) to do this (see Weiss p29).

In other words, find values for c and n0 such that the definition of Big-Oh holds

true as we did with the examples in lecture.

Remember, to prove that an equation exists in bigO for some ”relative rate of

3



growth” (Weiss pg. 30), there must be a constant multiple of that growth rate c

that is greater than the equation for all n > n0. For example, 4n +10 is in O(n)

because there exists an equation (5n) that is larger than 4n +10 for any n > n0

(n0 here is equal to 10).

4 Analysis proof by induction (8 pts)

Given the following recursive search function, prove by induction that it correctly

returns 1 if the value val is in the array v and 0 otherwise. (Hint: try working

out all the possibilities for arrays of size = 1 to get a sense of how your proof

should proceed.)

int search(v[]: integer array, size: integer, val: integer)

if (size == 0) return 0;

else

if (v[size-1] == val) return 1;

else return search(v, size-1, val);

You will need to provide at least these details in a complete proof:

Basis: The case where size = 0

Inductive Hypothesis: Assume...

Inductive Step:

Hint: For the inductive hypothesis, you need to assume the function works for

an array of size k and then investigate what happens when the array is of size

k+1.

4


	Computing bigO notation (7 pts)
	Comparing run-times (18 pts)
	Proving bigO bounds (5 pts)
	Analysis proof by induction (8 pts)

