
Final Review
CSE373 - Help Section

Preserving Abstraction

Possible Fixation: “Copy-in-copy-out”

Preserving Abstraction
class BankAccount {

 private Person owner;
private float balance;

 public BankAccount(Person o, float b) {
 if(o == null || o.birthdate == null){
 throw new IllegalArgumentException();
}
owner = o; balance = b;

}
public long getOwnerAge() {

 Date now = new Date();
long millisecondsPerYear = 365*24*60*60*1000;
return (now.getTime() - owner.birthdate.getTime()) / millisecondsPerYear;

}
}

Checks not null.

Not null.
NullPointerException!!

Preserving Abstraction
class BankAccount {

 private Person owner;
private float balance;

 public BankAccount(Person o, float b) {
 if(o == null || o.birthdate == null){
 throw new IllegalArgumentException();
}
owner = o; balance = b;

}
public long getOwnerAge() {

 Date now = new Date();
long millisecondsPerYear = 365*24*60*60*1000;
return (now.getTime() - owner.birthdate.getTime()) /
 millisecondsPerYear;

}
}

Person p = new Person();

p.name = "Bob";

p.birthdate = new Date(1988, 10, 17);

BankAccount acct = new BankAccount(p, 10.0);

p.birthdate = null;

acct.getOwnerAge();

Fixation:
The constructor of BankAccount should
do a deep copy of the Person object
passed in.

Multi-Threading

Multi-Threading
1.  Create Threads
2.  Call start() to run them

in parallel
3.  Wait for threads to

finish with join()
4.  Add together their

returns to get the final
result

Multi-Threading
Problem:
The current code is entirely
sequential because a separate
thread of execution is never created
(i.e. start() is NEVER called).

Fixation:
left.start();
right.run();
left.join();

Data Structures
(a) While processing a list of objects, check
if you have processed a particular object
before.

(b) Store a list of students and their
grades. You must also provide an efficient
way for a client to see all students sorted
in alphabetical order by name. Give the
running time for this operation as well.

(c) Process a digital image to divide the
image up into groups of pixels of the same
color.

Functions insert() find() remove()

Stack O(1) (push) / O(1) (pop)

Queue O(1) / O(1)

Hashtable O(1) O(1) O(1)

AVL Tree O(logN) O(logN) O(logN)

Priority Queue O(logN) / O(logN)

Union-Find Union: O(1), Find: O(logN)

Hashtable

AVL Tree

Union-Find

Data Structures
(d) Compute a frequency analysis on a file.
That is, count the number of times each
character occurs in the file, and store the
results.

(e) Store the activation records (i.e. objects
containing the return address and local
variable associated with a function call) for
nested function calls.

Functions insert() find() remove()

Stack O(1) (push) / O(1) (pop)

Queue O(1) / O(1)

Hashtable O(1) O(1) O(1)

AVL Tree O(logN) O(logN) O(logN)

Priority Queue O(logN) / O(logN)

Union-Find Union: O(1), Find: O(logN)

Hashtable

Stack

Sorting
Best Case Worst Case Average Case Additional Space

Insertion Sort O(n) O(n^2) O(n^2) O(1)

Selection Sort O(n^2) O(n^2) O(n^2) O(1)

Heap Sort ~O(n*logn) ~O(n*logn) O(n*logn) O(1)

Merge Sort ~O(n*logn) O(n*logn) O(n*logn) O(n)

Quick Sort (simple) O(n*logn) O(n^2) O(n*logn) O(1)

Quick Sort (good pivot) O(n*logn) O(n*logn) O(n*logn) O(1)

Bucket Sort O(n+K) O(n+K) O(n+K) O(n)

Radix Sort O(n) O(n) O(n) O(n)

