

CSE373: Data Structures & Algorithms

Lecture 8: AVL Trees and Priority Queues

Catie Baker Spring 2015

Announcements

- Homework 2 due NOW (a few minutes ago!!!)
- Homework 3 out today (due April 29th) ©
- Today
 - Finish AVL Trees
 - Start Priority Queues

The AVL Tree Data Structure

An AVL tree is a self-balancing binary search tree.

Structural properties

- 1. Binary tree property (same as BST)
- 2. Order property (same as for BST)
- 3. Balance property: balance of every node is between -1 and 1

Need to keep track of height of every node and maintain balance as we perform operations.

AVL Trees: Insert

- Insert as in a BST (add a leaf in appropriate position)
- Check back up path for imbalance, which will be 1 of 4 cases:
 - Unbalanced node's left-left grandchild is too tall
 - Unbalanced node's left-right grandchild is too tall
 - Unbalanced node's right-left grandchild is too tall
 - Unbalanced node's right-right grandchild is too tall
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallestunbalanced subtree has the same height as before the insertion
 - So all ancestors are now balanced

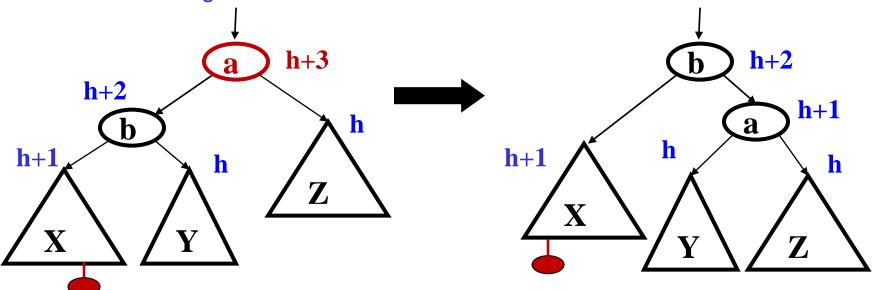
AVL Trees: Single rotation

• Single rotation:

- The basic operation we'll use to rebalance an AVL Tree
- Move child of unbalanced node into parent position
- Parent becomes the "other" child (always okay in a BST!)
- Other sub-trees move in only way BST allows

The general left-left case

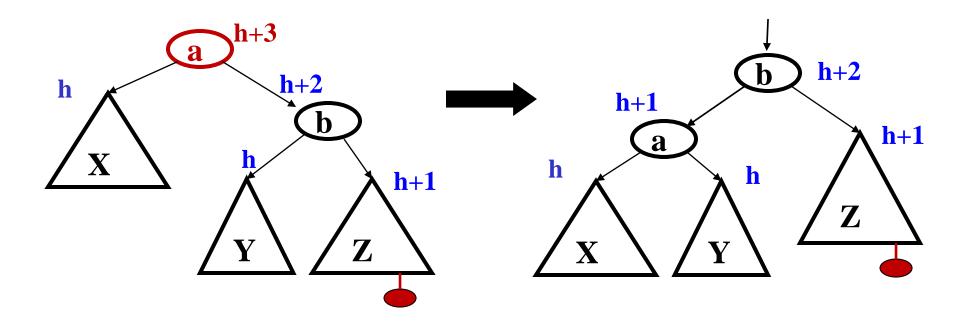
- Insertion into left-left grandchild causes an imbalance at node a
 - Move child of unbalanced node into parent position
 - Parent becomes the "other" child
 - Other sub-trees move in the only way BST allows:
 - using BST facts: X < b < Y < a < Z



- A single rotation restores balance at the node
 - To same height as before insertion, so ancestors now balanced

The general right-right case

- Mirror image to left-left case, so you rotate the other way
 - Exact same concept, but need different code

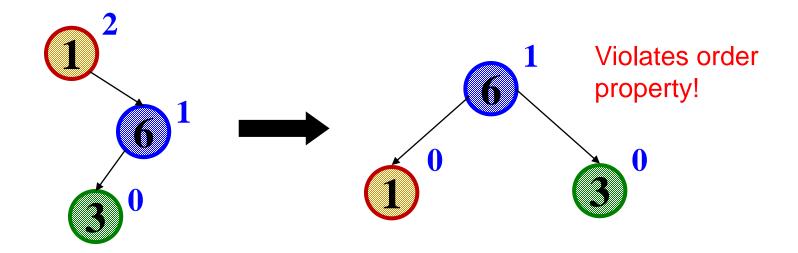


Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

First wrong idea: single rotation like we did for left-left

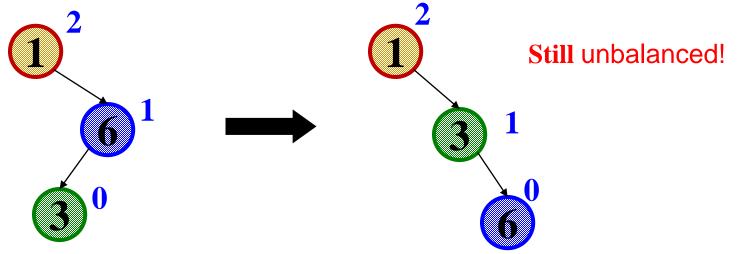


Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

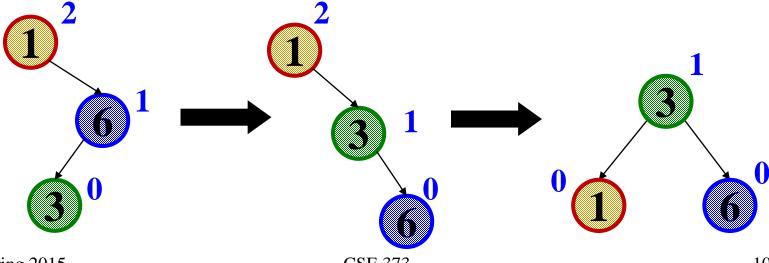
Simple example: insert(1), insert(6), insert(3)

 Second wrong idea: single rotation on the child of the unbalanced node



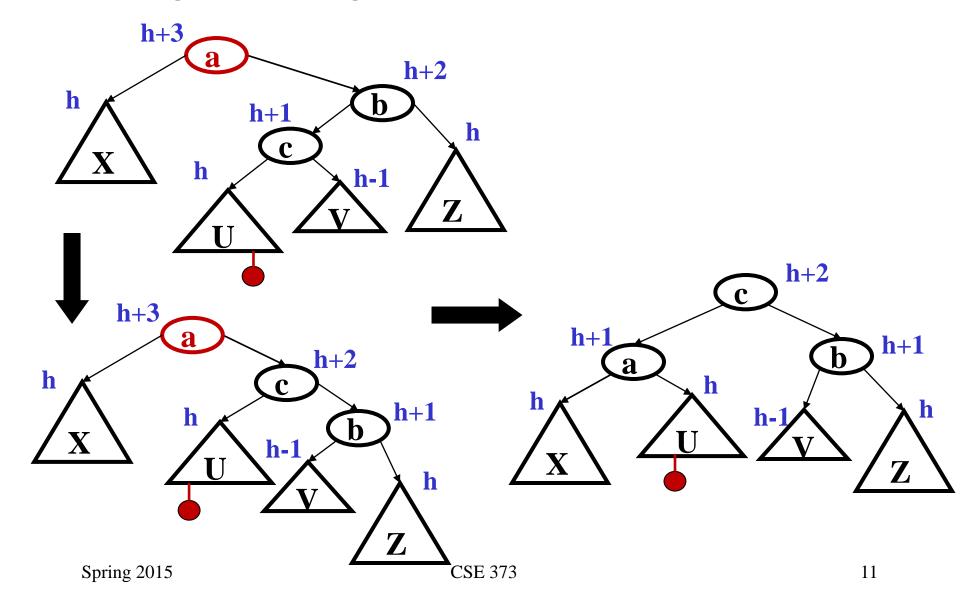
Sometimes two wrongs make a right @

- First idea violated the order property
- Second idea didn't fix balance
- But if we do both single rotations, starting with the second, it works! (And not just for this example.)
- Double rotation:
 - Rotate problematic child and grandchild
 - Then rotate between self and new child



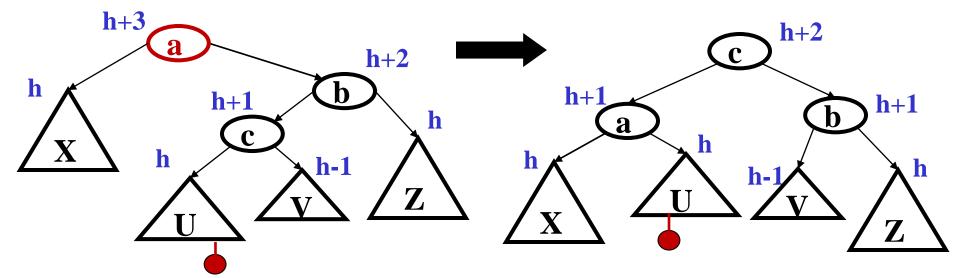
Spring 2015 CSE 373 10

The general right-left case



Comments

- Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert
 - So no ancestor in the tree will need rebalancing
- Does not have to be implemented as two rotations; can just do:



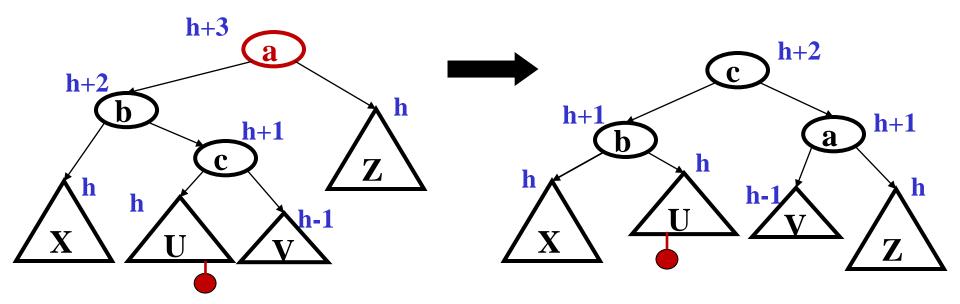
Easier to remember than you may think:

Move c to grandparent's position

Put a, b, X, U, V, and Z in the only legal positions for a BST

The last case: left-right

- Mirror image of right-left
 - Again, no new concepts, only new code to write



AVL Trees: efficiency

- Worst-case complexity of find: O(log n)
 - Tree is balanced
- Worst-case complexity of insert: O(log n)
 - Tree starts balanced
 - A rotation is O(1) and there's an $O(\log n)$ path to root
 - Tree ends balanced
- Worst-case complexity of buildTree: O(n log n)

Takes some more rotation action to handle **delete**...

Pros and Cons of AVL Trees

Arguments for AVL trees:

- All operations logarithmic worst-case because trees are always balanced
- 2. Height balancing adds no more than a constant factor to the speed of insert and delete

Arguments against AVL trees:

- 1. Difficult to program & debug [but done once in a library!]
- More space for height field
- 3. Asymptotically faster but rebalancing takes a little time
- 4. If amortized (later, I promise) logarithmic time is enough, use splay trees (in the text)

Done with AVL Trees (....phew!)

next up...

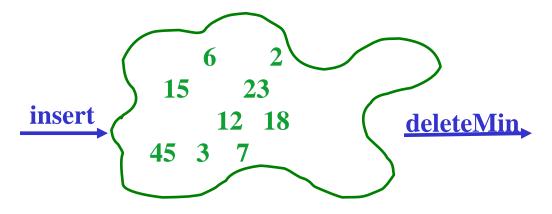
Priority Queues ADT (Homework 3 ©)

A new ADT: Priority Queue

- A priority queue holds compare-able data
 - Like dictionaries, we need to compare items
 - Given x and y, is x less than, equal to, or greater than y
 - Meaning of the ordering can depend on your data
 - Integers are comparable, so will use them in examples
 - But the priority queue ADT is much more general
 - Typically two fields, the priority and the data

Priorities

- Each item has a "priority"
 - In our examples, the lesser item is the one with the greater priority
 - So "priority 1" is more important than "priority 4"
 - (Just a convention, think "first is best")
- Operations:
 - insert
 - deleteMin
 - is_empty



- Key property: deleteMin returns and deletes the item with greatest priority (lowest priority value)
 - Can resolve ties arbitrarily

Example

```
insert x1 with priority 5
insert x2 with priority 3
insert x3 with priority 4
a = deleteMin // x2
b = deleteMin // x3
insert x4 with priority 2
insert x5 with priority 6
C = deleteMin // x4
d = deleteMin // x1
```

- Analogy: insert is like enqueue, deleteMin is like dequeue
 - But the whole point is to use priorities instead of FIFO

Applications

Like all good ADTs, the priority queue arises often

- Sometimes blatant, sometimes less obvious
- Run multiple programs in the operating system
 - "critical" before "interactive" before "compute-intensive"
 - Maybe let users set priority level
- Treat hospital patients in order of severity (or triage)
- Select print jobs in order of decreasing length?
- Forward network packets in order of urgency
- Select most frequent symbols for data compression
- Sort (first insert all, then repeatedly deleteMin)
 - Much like Homework 1 uses a stack to implement reverse

Finding a good data structure

- Will show an efficient, non-obvious data structure for this ADT
 - But first let's analyze some "obvious" ideas for n data items
 - All times worst-case; assume arrays "have room"

data	insert algorithm / time		deleteMin algorithm / time	
unsorted array	add at end	O(1)	search	<i>O</i> (<i>n</i>)
unsorted linked list	add at front	O(1)	search	O(n)
sorted circular array	y search / shift	<i>O</i> (<i>n</i>)	move front	O(1)
sorted linked list	put in right place	<i>O</i> (<i>n</i>)	remove at from	nt O(1)
binary search tree	put in right place	<i>O</i> (<i>n</i>)	leftmost	<i>O</i> (<i>n</i>)
AVL tree	put in right place	$O(\log n)$	leftmost ($O(\log n)$

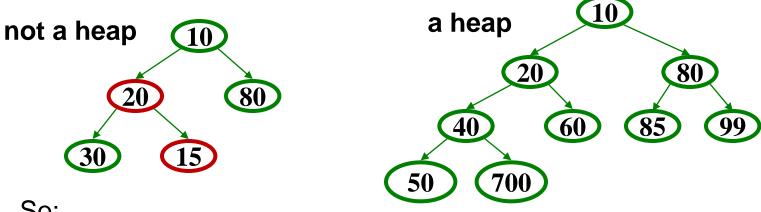
More on possibilities

- One more idea: if priorities are 0, 1, ..., k can use an array of k lists
 - insert: add to front of list at arr[priority], O(1)
 - **deleteMin**: remove from lowest non-empty list O(k)
- We are about to see a data structure called a "binary heap"
 - Another binary tree structure with specific properties
 - $O(\log n)$ insert and $O(\log n)$ deleteMin worst-case
 - Possible because we don't support unneeded operations; no need to maintain a full sort
 - Very good constant factors
 - If items arrive in random order, then insert is O(1) on average
 - Because 75% of nodes in bottom two rows

Our data structure

A binary min-heap (or just binary heap or just heap) has:

- Structure property: A *complete* binary tree
- Heap property: The priority of every (non-root) node is less important than the priority of its parent
 - Not a binary search tree



So:

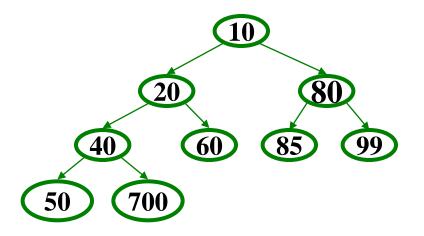
- Where is the highest-priority item?
- What is the height of a heap with *n* items?

Operations: basic idea

- findMin: return root.data
- deleteMin:
 - 1. answer = root.data
 - 2. Move right-most node in last row to root to restore structure property
 - 3. "Percolate down" to restore heap property

insert:

- Put new node in next position on bottom row to restore structure property
- 2. "Percolate up" to restore heap property

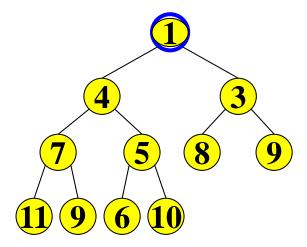


Overall strategy:

- Preserve structure property
- Break and restore heap property

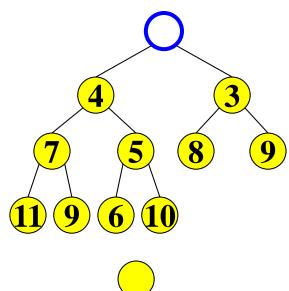
DeleteMin

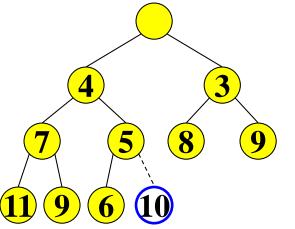
Delete (and later return) value at root node



DeleteMin: Keep the Structure Property

- We now have a "hole" at the root
 - Need to fill the hole with another value
- Keep structure property: When we are done, the tree will have one less node and must still be complete
- Pick the last node on the bottom row of the tree and move it to the "hole"

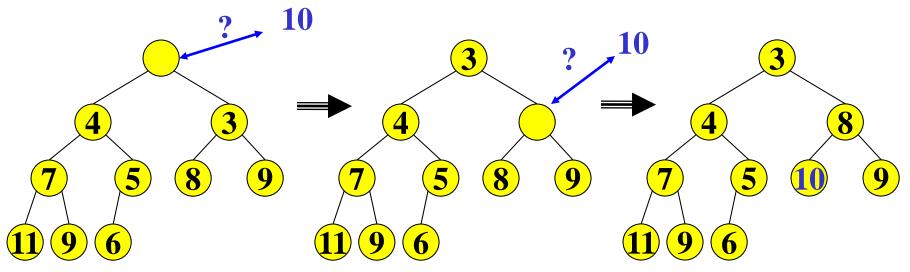




DeleteMin: Restore the Heap Property

Percolate down:

- Keep comparing priority of item with both children
- If priority is less important, swap with the most important child and go down one level
- Done if both children are less important than the item or we've reached a leaf node



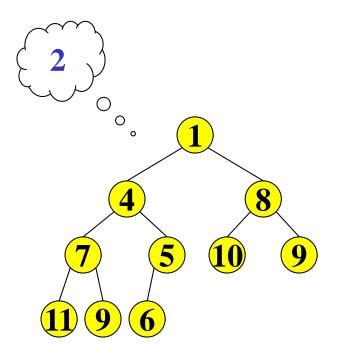
Why is this correct? What is the run time?

DeleteMin: Run Time Analysis

- Run time is O(height of heap)
- A heap is a complete binary tree
- Height of a complete binary tree of n nodes?
 - height = $\lfloor \log_2(n) \rfloor$
- Run time of deleteMin is O(log n)

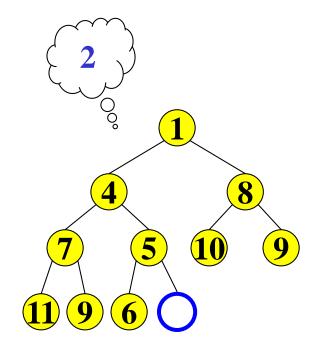
Insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct



Insert: Maintain the Structure Property

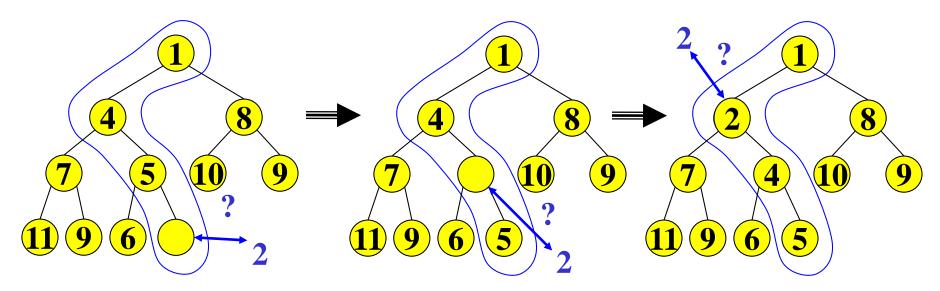
- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property



Insert: Restore the heap property

Percolate up:

- Put new data in new location
- If parent is less important, swap with parent, and continue
- Done if parent is more important than item or reached root

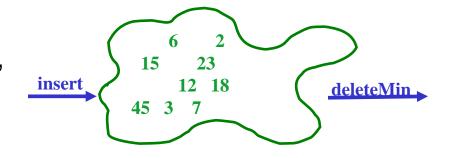


What is the running time?

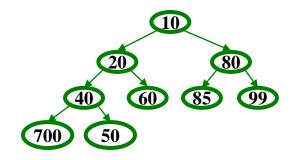
Like deleteMin, worst-case time proportional to tree height: O(log n)

Summary

- Priority Queue ADT:
 - insert comparable object,
 - deleteMin



- Binary heap data structure:
 - Complete binary tree
 - Each node has less important priority value than its parent



- insert and deleteMin operations = $O(\text{height-of-tree}) = O(\log n)$
 - insert: put at new last position in tree and percolate-up
 - deleteMin: remove root, put last element at root and percolate-down