
CSE373: Data Structures & Algorithms

Lecture 7: AVL Trees

Catie Baker

Spring 2015

Spring 2015 CSE373: Data Structures & Algorithms 1

Announcements

• HW2 due start of class Wednesday 15th April

• Last lecture: Binary Search Trees

• Today… AVL Trees

Spring 2015 CSE373: Data Structures & Algorithms 2

Review: Binary Search Tree (BST)

4

121062

115

8

14

13

7 9

• Structure property (binary tree)

– Each node has 2 children

– Result: keeps operations simple

• Order property
– All keys in left subtree smaller

than node’s key

– All keys in right subtree larger
than node’s key

– Result: easy to find any given key

Spring 2015 3CSE373: Data Structures & Algorithms

BST: Efficiency of Operations?

Spring 2015 CSE373: Data Structures & Algorithms 4

• Problem: operations may be inefficient if BST is
unbalanced.

• Find, insert, delete

– O(n) in the worst case

• BuildTree

– O(n2) in the worst case

Observation

• BST: the shallower the better!

Solution: Require and maintain a Balance Condition that

1. Ensures depth is always O(log n) – strong enough!

2. Is efficient to maintain – not too strong!

Spring 2015 5CSE373: Data Structures & Algorithms

How can we make a BST efficient?

• When we build the tree, make sure it’s balanced.

• BUT…Balancing a tree only at build time is insufficient because

sequences of operations can eventually transform our carefully

balanced tree into the dreaded list

• So, we also need to also keep the tree balanced as we perform
operations.

Potential Balance Conditions

1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root

have equal height

Too weak!

Height mismatch example:

Too weak!

Double chain example:

Spring 2015 6CSE373: Data Structures & Algorithms

Potential Balance Conditions

3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node

have equal height

Too strong!

Only perfect trees (2n – 1 nodes)

Too strong!

Only perfect trees (2n – 1 nodes)

Spring 2015 7CSE373: Data Structures & Algorithms

8

The AVL Balance Condition

Left and right subtrees of every node have heights differing by at most 1

Definition: balance(node) = height(node.left) – height(node.right)

AVL property: for every node x, –1 balance(x) 1

• Ensures small depth

– Will prove this by showing that an AVL tree of height

h must have a number of nodes exponential in h

(i.e. height must be logarithmic in number of nodes)

• Efficient to maintain

– Using single and double rotations

Spring 2015 CSE373: Data Structures & Algorithms

9

The AVL Tree Data Structure

An AVL tree is a self-balancing binary search tree.

Structural properties

1. Binary tree property (same as BST)

2. Order property (same as for BST)

3. Balance property:

balance of every node is between -1 and 1

Result: Worst-case depth is O(log n)

• Named after inventors Adelson-Velskii and Landis (AVL)

– First invented in 1962

Spring 2015 CSE373: Data Structures & Algorithms

111

84

6

10 12

70

0 0

0

1

1

2

3

Is this an AVL tree?

Spring 2015 CSE373: Data Structures & Algorithms 10

Yes! Because the left and right subtrees of

every node have heights differing by at most 1

3

1171

84

6

2

5

0

0 0 0

1

1

2

3

4

Is this an AVL tree?

Spring 2015 CSE373: Data Structures & Algorithms 11

Nope! The left and right subtrees of some nodes

(e.g. 1, 4, 6) have heights that differ by more than 1

12

The shallowness bound

Let S(h) = the minimum number of nodes in an AVL tree of height h

– If we can prove that S(h) grows exponentially in h, then a tree
with n nodes has a logarithmic height

• Step 1: Define S(h) inductively using AVL property

– S(-1)=0, S(0)=1, S(1)=2

– For h 1, S(h) = 1+S(h-1)+S(h-2)

• Step 2: Show this recurrence grows exponentially

– Can prove for all h, S(h) > h – 1 where

 is the golden ratio, (1+5)/2, about 1.62

– Growing faster than 1.6h is “plenty exponential”

• It does not grow faster than 2h

h-1h-2

h

Spring 2015 CSE373: Data Structures & Algorithms

Before we prove it

• Good intuition from plots comparing:

– S(h) computed directly from the definition

– h which is ((1+5)/2) h

• S(h) is always bigger, up to trees with huge numbers of nodes

– Graphs aren’t proofs, so let’s prove it

Spring 2015 13CSE373: Data Structures & Algorithms

The Golden Ratio

62.1
2

51

• Definition: If (a+b)/a = a/b, then a = b

• The longer part (a) divided by the smaller part (b) is also equal to

the whole length (a+b) divided by the longer part (a)

• Since the Renaissance, many artists and architects have

proportioned their work (e.g., length:height) to approximate the

golden ratio.

• The most pleasing and beautiful shape.

Spring 2015 CSE373: Data Structures & Algorithms

This is a special

number!

14

The Golden Ratio

62.1
2

51

• We will use one special arithmetic fact about :

2

Spring 2015 CSE373: Data Structures & Algorithms

This is a special

number!

= ((1+51/2)/2)2

= (1 + 2*51/2 + 5)/4

= (6 + 2*51/2)/4

= (3 + 51/2)/2

= (2 + 1 + 51/2)/2

= 2/2 + 1/2 + 51/2/2

= 1 + (1 + 51/2)/2

= 1 +

15

Prove that S(h) grows exponentially in h
(then a tree with n nodes has a logarithmic height)

S(h) = the minimum number of nodes in an AVL tree of height h

Theorem: For all h 0, S(h) > h – 1

Proof: By induction on h

Base cases:

S(0) = 1 > 0 – 1 = 0

S(1) = 2 > 1 – 1 0.62

Spring 2015 16CSE373: Data Structures & Algorithms

S(-1)=0, S(0)=1, S(1)=2

For h 1, S(h) = 1+S(h-1)+S(h-2)

Prove that S(h) grows exponentially in h
(then a tree with n nodes has a logarithmic height)

S(h) = the minimum number of nodes in an AVL tree of height h

Inductive case (k > 1):

Assume S(k) > k – 1 and S(k-1) > k-1 – 1

Show S(k+1) > k+1 – 1

S(k+1) = 1 + S(k) + S(k-1) by definition of S

> 1 + k – 1 + k-1 – 1 by induction

> k + k-1 – 1 by arithmetic (1-1=0)

> k-1 (+ 1) – 1 by arithmetic (factor k-1)

> k-1 2 – 1 by special property of (2 = + 1)

> k+1 – 1 by arithmetic (add exponents)

Spring 2015 17CSE373: Data Structures & Algorithms

S(-1)=0, S(0)=1, S(1)=2

For h 1, S(h) = 1+S(h-1)+S(h-2)

Good news

Proof means that if we have an AVL tree, then find is O(log n)

– Recall logarithms of different bases > 1 differ by only a

constant factor

But as we insert and delete elements, we need to:

1. Track balance

2. Detect imbalance

3. Restore balance

Spring 2015 18CSE373: Data Structures & Algorithms

An AVL Tree

20

92 15

5

10

30

177

0

0 0

011

2 2

3

Track height at all times!

Spring 2015 CSE373: Data Structures & Algorithms 19

…

3

value

height

children

10 key

Node object

AVL tree operations

• AVL find:

– Same as BST find

• AVL insert:

– First BST insert, then check balance and potentially “fix” the

AVL tree

– Four different imbalance cases

• AVL delete:

– The “easy way” is lazy deletion

– Otherwise, do the deletion and then check for several imbalance

cases (we will skip this)

Spring 2015 CSE373: Data Structures & Algorithms 20

Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)

2. For each node on the path from the root to the new leaf, the

insertion may (or may not) have changed the node’s height

3. So after insertion in a subtree, detect height imbalance and

perform a rotation to restore balance at that node

All the action is in defining the correct rotations to restore balance

Fact that an implementation can ignore:

– There must be a deepest element that is imbalanced after the

insert (all descendants still balanced)

– After rebalancing this deepest node, every node is balanced

– So at most one node needs to be rebalanced

Spring 2015 21CSE373: Data Structures & Algorithms

Case #1: Example

Spring 2015 22CSE373: Data Structures & Algorithms

Insert(6)

Insert(3)

Insert(1)

Third insertion violates

balance property

• happens to be at

the root

What is the only way to

fix this?

6

3

1

2

1

0

6

3

1

0

6
0

6

3

1
0

1

0

Fix: Apply “Single Rotation”

• Single rotation: The basic operation we’ll use to rebalance

– Move child of unbalanced node into parent position

– Parent becomes the “other” child (always okay in a BST!)

– Other subtrees move in only way BST allows (next slide)

Spring 2015 23CSE373: Data Structures & Algorithms

3

1 6
00

1

6

3

0

1

2

AVL Property violated at node 6

Child’s new-height = old-height-before-insert

1

The example generalized

• Insertion into left-left grandchild causes an imbalance

– 1 of 4 possible imbalance causes (other 3 coming up!)

• Creates an imbalance in the AVL tree (specifically a is imbalanced)

Spring 2015 24CSE373: Data Structures & Algorithms

a

Z

Y

b

X

h h

h

h+1
h+2 a

Z

Y

b

X

h+1 h

h

h+2
h+3

The general left-left case
• So we rotate at a

– Move child of unbalanced node into parent position

– Parent becomes the “other” child

– Other sub-trees move in the only way BST allows:

• using BST facts: X < b < Y < a < Z

Spring 2015 25CSE373: Data Structures & Algorithms

• A single rotation restores balance at the node

– To same height as before insertion, so ancestors now balanced

a

Z

Y

b

X

h+1 h

h

h+2
h+3 b

ZY

a

h+1 h
h

h+1

h+2

X

Another example: insert(16)

Spring 2015 26CSE373: Data Structures & Algorithms

104

228

15

3 6

19

17 20

24

16

104

8

15

3 6

19

17

2016

22

24

The general right-right case

• Mirror image to left-left case, so you rotate the other way

– Exact same concept, but need different code

Spring 2015 27CSE373: Data Structures & Algorithms

a

ZY

X

h

h
h+1

h+3

b

h+2 b

Z

Y

a

X

h h

h+1

h+1
h+2

Two cases to go

Unfortunately, single rotations are not enough for insertions in the

left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

– First wrong idea: single rotation like we did for left-left

Spring 2015 28CSE373: Data Structures & Algorithms

3

6

1

0

1

2

6

1 3

1

0 0

Violates order

property!

Two cases to go

Unfortunately, single rotations are not enough for insertions in the

left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

– Second wrong idea: single rotation on the child of the

unbalanced node

Spring 2015 29CSE373: Data Structures & Algorithms

3

6

1

0

1

2

6

3

1

0

1

2

Still unbalanced!

Sometimes two wrongs make a right

• First idea violated the order property

• Second idea didn’t fix balance

• But if we do both single rotations, starting with the second, it

works! (And not just for this example.)

• Double rotation:

1. Rotate problematic child and grandchild

2. Then rotate between self and new child

Spring 2015 30CSE373: Data Structures & Algorithms

3

6

1

0

1

2

6

3

1

0

1

2

1

00

1

3

6

The general right-left case

Spring 2015 31CSE373: Data Structures & Algorithms

a

X

b

c

h-1

h

h

h

V
U

h+1

h+2

h+3

Z

a

X

c

h-1

h+1h

h

V

U

h+2

h+3

Z

b

h

c

X

h-1

h+1

h

h+1

VU

h+2

Z

b

h

a

h

Comments

• Like in the left-left and right-right cases, the height of the subtree

after rebalancing is the same as before the insert

– So no ancestor in the tree will need rebalancing

• Does not have to be implemented as two rotations; can just do:

Spring 2015 32CSE373: Data Structures & Algorithms

a

X

b

c

h-1

h

h

h

V
U

h+1

h+2

h+3

Z

c

X

h-1

h+

1h

h+1

VU

h+2

Z

b

h

a

h

Easier to remember than you may think:

Move c to grandparent’s position

Put a, b, X, U, V, and Z in the only legal positions for a BST

The last case: left-right

• Mirror image of right-left

– Again, no new concepts, only new code to write

Spring 2015 33CSE373: Data Structures & Algorithms

a

h-1

h

h
h

VU

h+1

h+2

h+3

Z

X

b

c

c

X

h-1

h+

1h

h+1

VU

h+2

Z

a

h

b

h

Insert, summarized

• Insert as in a BST

• Check back up path for imbalance, which will be 1 of 4 cases:

– Node’s left-left grandchild is too tall

– Node’s left-right grandchild is too tall

– Node’s right-left grandchild is too tall

– Node’s right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert

• After the appropriate single or double rotation, the smallest-

unbalanced subtree has the same height as before the insertion

– So all ancestors are now balanced

Spring 2015 34CSE373: Data Structures & Algorithms

Now efficiency

• Worst-case complexity of find: O(log n)

– Tree is balanced

• Worst-case complexity of insert: O(log n)

– Tree starts balanced

– A rotation is O(1) and there’s an O(log n) path to root

– Tree ends balanced

• Worst-case complexity of buildTree: O(n log n)

Takes some more rotation action to handle delete…

Spring 2015 35CSE373: Data Structures & Algorithms

Pros and Cons of AVL Trees

Spring 2015 CSE373: Data Structures & Algorithms 36

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always

balanced

2. Height balancing adds no more than a constant factor to the speed
of insert and delete

Arguments against AVL trees:

1. Difficult to program & debug [but done once in a library!]

2. More space for height field

3. Asymptotically faster but rebalancing takes a little time

4. If amortized (later, I promise) logarithmic time is enough, use splay

trees (also in the text)

