CSE373: Data Structures & Algorithms

Lecture 6: Binary Search Trees

Catie Baker
Spring 2015

Spring 2015 CSE373: Data Structures & Algorithms



Announcements

 HW2 due start of class Wednesday April 15t



Previously on CSE 373

— Dictionary ADT

 stores (key, value) pairs

* find, insert, delete
— Trees

* Terminology
* Binary Trees



Reminder: Tree terminology

Node / Vertex

Root

Left subtree

Right subtree

—> Leaves




Example Tree Calculations

Recall: Height of a tree is the maximum Height =4
number of edges from the root to a leaf.

What is the height of this tree?

0 (W

Height =0 e Height = 1

What is the depth of node G?
Depth =2

What is the depth of node L?
Depth =4




Binary Trees

* Binary tree: Each node has at most 2 children (branching factor 2)
* Binarytreeis
 Aroot (with data)

* A left subtree (may be empty)
* Aright subtree (may be empty)

§ ¢

OOO © @@ © © @@ ®
Complete Tree Perfect Tree @ @

Full Tree

e Special Cases

Spring 2015 CSE373: Data Structures & Algorithms 6



Tree Traversals

A traversal is an order for visiting all the nodes of a tree

* Pre-order:

+ %

e [n-order:

AR

root, left subtree, right subtree

2 4 5

left subtree, root, right subtree

4 + 5

* Post-order: left subtree, right subtree, root

2 4

Spring 2015

*

5

+

(an expression tree)

CSE373: Data Structures &
Algorithms



More on traversals

volid inOrderTraversal (Node t) {
1f(t !'= null) {
inOrderTraversal (t.left) ;
process (t.element) ; G G
inOrderTraversal (t.right) ;

} 0606106
}
‘= current node ‘ = processing (on the call stack)

‘= completed node v =element has been processed

CSE373: Data Structures &

Spring 2015 8 Algorithms



More on traversals

volid inOrderTraversal (Node t) {
1f(t !'= null) {
inOrderTraversal (t.left) ;
process (t.element) ; G
inOrderTraversal (t.right) ;

} 0606106
}
‘= current node ‘ = processing (on the call stack)

‘= completed node v =element has been processed

CSE373: Data Structures &

Spring 2015 9 Algorithms



More on traversals

volid inOrderTraversal (Node t) {
1f(t !'= null) {
inOrderTraversal (t.left) ;
process (t.element) ; G
inOrderTraversal (t.right) ;

} 0016
}
‘= current node ‘ = processing (on the call stack)

‘= completed node v =element has been processed

CSE373: Data Structures &

Spring 2015 10 Algorithms



More on traversals

volid inOrderTraversal (Node t) {
1f(t !'= null) {
inOrderTraversal (t.left) ;
process (t.element) ; G
inOrderTraversal (t.right) ;

v
}
| OOE
‘= current node ‘ = processing (on the call stack)

‘= completed node v =element has been processed

CSE373: Data Structures &

Spring 2015 11 Algorithms



More on traversals

volid inOrderTraversal (Node t) {
1f(t !'= null) {
inOrderTraversal (t.left); /
process (t.element) ;
inOrderTraversal (t.right) ;

‘= current node ‘ = processing (on the call stack)

‘= completed node v =element has been processed

DB

CSE373: Data Structures &

Spring 2015 12 Algorithms



More on traversals

volid inOrderTraversal (Node t) {
1f(t !'= null) {
inOrderTraversal (t.left); /
process (t.element) ;
inOrderTraversal (t.right) ;

‘= current node ‘ = processing (on the call stack)

‘= completed node v =element has been processed

DBE

CSE373: Data Structures &

Spring 2015 13 Algorithms



More on traversals

volid inOrderTraversal (Node t) {
1f(t !'= null) {
inOrderTraversal (t.left) ;
process (t.element) ;
inOrderTraversal (t.right) ;

‘= current node ‘ = processing (on the call stack)

‘= completed node v =element has been processed

DBEA

CSE373: Data Structures &
Algorithms

Spring 2015 14



More on traversals

volid inOrderTraversal (Node t) {
1f(t !'= null) {
inOrderTraversal (t.left) ;
process (t.element) ;
inOrderTraversal (t.right) ;

‘= current node ‘ = processing (on the call stack)

‘= completed node v =element has been processed

DBEA

CSE373: Data Structures &
Algorithms

Spring 2015 15



More on traversals

volid inOrderTraversal (Node t) {
1if(t !'= null) {
inOrderTraversal (t.left);
process (t.element) ;
inOrderTraversal (t.right) ;

}

‘= current node ‘ = processing (on the call stack)

‘= completed node v =element has been processed

DBEAFC

CSE373: Data Structures &
Algorithms

Spring 2015 16



More on traversals

volid inOrderTraversal (Node t) {
1f(t !'= null) {
inOrderTraversal (t.left) ;
process (t.element) ;
inOrderTraversal (t.right) ;

}

‘= current node ‘ = processing (on the call stack)

‘= completed node v =element has been processed

DBEAFCG

CSE373: Data Structures &
Algorithms

Spring 2015 17



More on traversals

void inOrderTraversal (Node t) {
if(t '= null) {
inOrderTraversal (t.left) ;
process (t.element) ;
inOrderTraversal (t.right) ;

}
}

Sometimes order doesn’t matter

« Example: sum all elements
Sometimes order matters

 Example: evaluate an expression tree

Spring 2015 CSE373: Data Structures & Algorithms 18



Binary Search Tree (BST) Data Structure

« Structure property (binary tree)
— Each node has < 2 children
— Result: keeps operations simple

* QOrder property

— All keys in left subtree smaller
than node’s key

— All keys in right subtree larger
than node’s key

A binary search tree is a type of binary tree
(but not all binary trees are binary search trees!)

Spring 2015 CSE373: Data Structures & Algorithms 19



Are these BSTs?

Activity!

Spring 2015 CSE373: Data Structures & Algorithms 20



Find in BST, Recursive

Data find (Key key, Node root) {
if (root == null)
return null;
if (key < root.key)
return find(key,root.left);
if (key > root.key)
return find(key,root.right) ;
return root.data;

What is the running time?

Worst case running time is O(n).
- Happens if the tree is very lopsided (e.g. list)

O—Q0——«

Spring 2015 CSE373: Data Structures & Algorithms 21



Find in BST, lterative

Data find (Key key, Node root) {
while (root !'= null
&& root.key !'= key) {
if (key < root.key)
root = root.left;
else (key > root.key)
root = root.right;
}
if (root == null)
return null;
return root.data;

}

Worst case running time is O(n).
- Happens if the tree is very lopsided (e.g. list)

Spring 2015 CSE373: Data Structures & Algorithms 22



Bonus: Other BST “Finding” Operations

e FindMin: Find minimum node
— Left-most node

« FindMax: Find maximum node
— Right-most node

Spring 2015 CSE373: Data Structures & Algorithms

23



Insert in BST

insert (13)
insert (8)
insert (31)

(New) insertions happen
only at leaves — easy!

Again... worst case running time is O(n), which
may happen if the tree is not balanced.

Spring 2015 CSE373: Data Structures & Algorithms 24



Deletion in BST

Why might deletion be harder than insertion?
Removing an item may disrupt the tree structure!

Spring 2015 CSE373: Data Structures & Algorithms

25



Deletion in BST

« Basic idea: £ind the node to be removed, then
“fix” the tree so that it is still a binary search tree

 Three potential cases to fix:
— Node has no children (leaf)
— Node has one child
— Node has two children

Spring 2015 CSE373: Data Structures & Algorithms

26



Deletion — The Leaf Case

delete (17)

Spring 2015 CSE373: Data Structures & Algorithms

27



Deletion — The One Child Case

delete (15)

Spring 2015 CSE373: Data Structures & Algorithms

28



Deletion — The One Child Case

delete (15)

Spring 2015 CSE373: Data Structures & Algorithms

29



Deletion — The Two Child Case

delete (5)

What can we replace 5 with?

Spring 2015 CSE373: Data Structures & Algorithms

30



Deletion — The Two Child Case

|dea: Replace the deleted node with a value guaranteed to be
between the two child subtrees

Options:
e successor minimum node from right subtree
findMin (node.right)

» predecessor maximum node from left subtree
findMax (node.left)

Now delete the original node containing successor or predecessor

Spring 2015 CSE373: Data Structures & Algorithms 31



Deletion: The Two Child Case (example)

delete (23)

Spring 2015 CSE373: Data Structures & Algorithms

32



Deletion: The Two Child Case (example)

delete (23)

Spring 2015 CSE373: Data Structures & Algorithms

33



Deletion: The Two Child Case (example)

delete (23)

Spring 2015 CSE373: Data Structures & Algorithms

34



Deletion: The Two Child Case (example)

delete (23)

Success! ©

Spring 2015 CSE373: Data Structures & Algorithms

35



Lazy Deletion

Lazy deletion can work well for a BST

— Simpler

— Can do “real deletions” later as a batch

— Some inserts can just “undelete” a tree node

But
— Can waste space and slow down find operations
— Make some operations more complicated:
* e.g., findMin and £indMax?

Spring 2015 CSE373: Data Structures & Algorithms

36



BuildTree for BST

Let’'s consider buildTree
— Insert all, starting from an empty tree

Insert keys 1, 2, 3, 4, 5,6, 7, 8, 9 into an empty BST

— If inserted in given order,
what is the tree?

— What big-O runtime for O(n?)
this kind of sorted input? Not a happy place

— Is inserting in the reverse order
any better?

Spring 2015 CSE373: Data Structures & Algorithms

37



BuildTree for BST
 Insertkeys 1,2, 3,4,5,6, 7,8, 9into an empty BST

* What we if could somehow re-arrange them

— median first, then left median, right median, etc.
- 5,3,7,2,1,4,8,6,9

— What tree does that give us?

— What big-O runtime?
O(n log n), definitely better

— So the order the values
come in is important!

Spring 2015 CSE373: Data Structures & Algorithms 38



