CSE373: Data Structures \& Algorithms Lecture 5: Dictionary ADTs; Binary Trees

Catie Baker
Spring 2015

Today's Outline

Announcements

- Homework 1 due TODAY at 11:59pm ©
- Homework 2 out
- Due online Wednesday April $15^{\text {th }}$ at the START of class

Today's Topics

- Finish Asymptotic Analysis
- Dictionary ADT (a.k.a. Map): associate keys with values
- Extremely common
- Binary Trees

Summary of Asymptotic Analysis

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
- Or power or dollars or ...
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper)
- The most common thing we will do is give an O upper bound to the worst-case running time of an algorithm.

Big-Oh Caveats

- Asymptotic complexity focuses on behavior for large n and is independent of any computer / coding trick
- But you can "abuse" it to be misled about trade-offs
- Example: $n^{1 / 10}$ vs. $\log n$
- Asymptotically $n^{1 / 10}$ grows more quickly
- But the "cross-over" point is around 5 * 10^{17}
- So if you have input size less than 2^{58}, prefer $n^{1 / 10}$
- For small n, an algorithm with worse asymptotic complexity might be faster
- If you care about performance for small n then the constant factors can matter

Addendum: Timing vs. Big-Oh Summary

- Big-oh is an essential part of computer science's mathematical foundation
- Examine the algorithm itself, not the implementation
- Reason about (even prove) performance as a function of n
- Timing also has its place
- Compare implementations
- Focus on data sets you care about (versus worst case)
- Determine what the constant factors "really are"

Let's take a breath

- So far we've covered
- Some simple ADTs: stacks, queues, lists
- Some math (proof by induction)
- How to analyze algorithms
- Asymptotic notation (Big-Oh)
- Coming up....
- Many more ADTs
- Starting with dictionaries

The Dictionary (a.k.a. Map) ADT

- Data:
- set of (key, value) pairs
- keys must be comparable
- Operations:
- insert(key,value)
- find (key)
- delete (key)
insert(catie,)

A Modest Few Uses

Any time you want to store information according to some key and be able to retrieve it efficiently

- Lots of programs do that!
- Search:
- Networks:
- Operating systems:
- Compilers:
- Databases:
- Biology:
inverted indexes, phone directories, ... router tables
page tables
symbol tables
dictionaries with other nice properties genome maps

Possibly the most widely used ADT

Simple implementations

For dictionary with n key/value pairs

- Unsorted linked-list | insert | find | delete |
| ---: | ---: | ---: |
| $\boldsymbol{O}(\mathbf{1})^{*}$ | $\boldsymbol{O}(\mathbf{n})$ | $\boldsymbol{O}(\mathbf{n})$ |
- Unsorted array
$O(1)^{*} \quad O(n)$
$O(n)$
- Sorted linked list
- Sorted array
$O(\mathrm{n}) \quad O(\mathrm{n})$
$O(n)$
* Unless we need to check for duplicates

We'll see a Binary Search Tree (BST) probably does better but not in the worst case (unless we keep it balanced)

Lazy Deletion

$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{2 4}$	$\mathbf{3 0}$	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{5 0}$
\checkmark	\mathbf{x}	\checkmark	\checkmark	\checkmark	\checkmark	\boldsymbol{x}	\checkmark	\checkmark

A general technique for making delete as fast as find:

- Instead of actually removing the item just mark it deleted

Plusses:

- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

Minuses:

- Extra space for the "is-it-deleted" flag
- Data structure full of deleted nodes wastes space
- May complicate other operations

Better dictionary data structures

There are many good data structures for (large) dictionaries

1. Binary trees
2. AVL trees

- Binary search trees with guaranteed balancing

3. B-Trees

- Also always balanced, but different and shallower
- B-Trees are not the same as Binary Trees
- B-Trees generally have large branching factor

4. Hashtables

- Not tree-like at all

Skipping: Other balanced trees (e.g., red-black, splay)

Tree terms (review?)

More tree terms

- There are many kinds of trees
- Every binary tree is a tree
- Every list is kind of a tree (think of "next" as the one child)
- There are many kinds of binary trees
- Every binary search tree is a binary tree
- Later: A binary heap is a different kind of binary tree
- A tree can be balanced or not
- A balanced tree with n nodes has a height of $O(\log n)$
- Different tree data structures have different "balance conditions" to achieve this

Kinds of trees

Certain terms define trees with specific structure

- Binary tree: Each node has at most 2 children (branching factor 2)
- n-ary tree: Each node has at most n children (branching factor n)
- Perfect tree: Each row completely full
- Complete tree: Each row completely full except maybe the bottom row, which is filled from left to right

What is the height of a perfect binary tree with n nodes?
A complete binary tree?

Binary Trees

- Binary tree: Each node has at most 2 children (branching factor 2)
- Binary tree is
- A root (with data)
- A left subtree (may be empty)
- A right subtree (may be empty)
- Representation:

Data	
left pointer	right pointer

- For a dictionary, data will include a key and a value

Binary Tree Representation

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h :

- max \# of leaves: 2^{h}
- max \# of nodes: $2^{(h+1)}-1$
- min \# of leaves: 1

- min \# of nodes: $\boldsymbol{h}+\boldsymbol{1}$

For n nodes, we cannot do better than $O(\log n)$ height and we want to avoid $O(n)$ height

Calculating height

What is the height of a tree with root root?
int treeHeight(Node root) \{
???
\}

Calculating height

What is the height of a tree with root root?

```
int treeHeight(Node root) {
    if(root == null)
        return -1;
    return 1 + max(treeHeight(root.left),
    treeHeight(root.right));
}
```

Running time for tree with n nodes: $O(n)$ - single pass over tree
Note: non-recursive is painful - need your own stack of pending nodes; much easier to use recursion's call stack

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

- Pre-order. root, left subtree, right subtree
- In-order: left subtree, root, right subtree
- Post-order: left subtree, right subtree, root

(an expression tree)

More on traversals

```
void inOrderTraversal (Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```


A = current node (A) = processing (on the call stack)
(A) = completed node \checkmark = element has been processed

More on traversals

```
void inOrderTraversal (Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```


A = current node (A) = processing (on the call stack)
(A) = completed node \checkmark = element has been processed

More on traversals

```
void inOrderTraversal (Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```


A = current node (A) = processing (on the call stack)
(A) = completed node \checkmark = element has been processed

More on traversals

```
void inOrderTraversal (Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```


A = current node (A) = processing (on the call stack)
(A) = completed node \checkmark = element has been processed

More on traversals

```
void inOrderTraversal(Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```


A = current node A = processing (on the call stack)
A = completed node $\sqrt{ }=$ element has been processed

More on traversals

```
void inOrderTraversal(Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```


A = current node A = processing (on the call stack)
A = completed node $\sqrt{ }=$ element has been processed

More on traversals

```
void inOrderTraversal (Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```


A = current node A = processing (on the call stack)
A = completed node $\sqrt{ }=$ element has been processed

More on traversals

```
void inOrderTraversal (Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```


A = current node A = processing (on the call stack)
A = completed node $\sqrt{ }=$ element has been processed

More on traversals

```
void inOrderTraversal (Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```


A = current node A = processing (on the call stack)
A = completed node $\sqrt{ }=$ element has been processed

More on traversals

```
void inOrderTraversal (Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```


A = current node A = processing (on the call stack)
(A) = completed node $\sqrt{ }=$ element has been processed

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

- Pre-order: root, left subtree, right subtree + * 245
- In-order. left subtree, root, right subtree

$$
2 * 4+5
$$

- Post-order: left subtree, right subtree, root

$$
24 \text { * } 5+
$$

(an expression tree)

