

CSE373: Data Structures and Algorithms Lecture 4: Asymptotic Analysis

Catie Baker Spring 2015

Efficiency

- What does it mean for an algorithm to be *efficient*?
 - We primarily care about *time* (and sometimes *space*)
- Is the following a good definition?
 - "An algorithm is efficient if, when implemented, it runs quickly on real input instances"
 - Where and how well is it implemented?
 - What constitutes "real input?"
 - How does the algorithm *scale* as input size changes?

Gauging efficiency (performance)

- Uh, why not just run the program and time it?
 - Too much *variability*, not reliable or *portable*:
 - Hardware: processor(s), memory, etc.
 - OS, Java version, libraries, drivers
 - Other programs running
 - Implementation dependent
 - Choice of input
 - Testing (inexhaustive) may *miss* worst-case input
 - Timing does not *explain* relative timing among inputs (what happens when *n* doubles in size)
- Often want to evaluate an *algorithm*, not an implementation
 - Even *before* creating the implementation ("coding it up")

Comparing algorithms

When is one *algorithm* (not *implementation*) better than another?

- Various possible answers (clarity, security, ...)
- But a big one is *performance*: for sufficiently large inputs, runs in less time (our focus) or less space

We will focus on large inputs because probably any algorithm is "plenty good" for small inputs (if *n* is 10, probably anything is fast)

- Time difference really shows up as n grows

Answer will be *independent* of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to "coding it up and timing it on some test cases"

- Can do analysis before coding!

We usually care about worst-case running times

- Has proven reasonable in practice
 - Provides some guarantees
- Difficult to find a satisfactory alternative
 - What about average case?
 - Difficult to express full range of input
 - Could we use randomly-generated input?
 - May learn more about generator than algorithm

Example

Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    ???
}
```

Linear search

Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
   for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
            return true;
   return false;
}</pre>
```

Best case? k is in arr[0] c1 steps = O(1)

Worst case? k is not in arr c2*(arr.length) = O(arr.length)

Binary search

Find an integer in a *sorted* array

- Can also be done non-recursively but "doesn't matter" here

Binary search

Best case: c1 steps = O(1)Worst case: T(n) = c2 steps + T(n/2) where n is hi-lo

- $O(\log n)$ where *n* is array.length
- Solve recurrence equation to know that...

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) {
    return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2;
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]==k) return help(arr,k,mid+1,hi);
    else return help(arr,k,lo,mid);
}
```

Solving Recurrence Relations

- 1. Determine the recurrence relation. What is the base case? $- T(n) = c^2 + T(n/2)$ $T(1) = c^1$
- 2. "Expand" the original relation to find an equivalent general expression *in terms of the number of expansions*.

$$- T(n) = c^{2} + c^{2} + T(n/4)$$

= c^{2} + c^{2} + c^{2} + T(n/8)
= ...
= c^{2}(k) + T(n/(2^{k}))

- 3. Find a closed-form expression by setting *the number of expansions* to a value (e.g. 1) which reduces the problem to a base case
 - $n/(2^{k}) = 1 \text{ means } n = 2^{k} \text{ means } k = \log_{2} n$

- So
$$T(n) = c2 \log_2 n + T(1)$$

- So $T(n) = c2 \log_2 n + c1$ (get to base case and do it)
- So T(n) is $O(\log n)$

Ignoring constant factors

- So binary search is $O(\log n)$ and linear is O(n)
 - But which is faster?
- Could depend on constant factors
 - How many assignments, additions, etc. for each n
 - E.g. T(n) = 5,000,000n vs. $T(n) = 5n^2$
 - And could depend on overhead unrelated to n
 - E.g. $T(n) = 5,000,000 + \log n$ vs. T(n) = 10 + n
- But there exists some n_0 such that for all $n > n_0$ binary search wins
- Let's play with a couple plots to get some intuition...

Example

- Let's try to "help" linear search
 - Run it on a computer 100x as fast (say 2014 model vs. 1994)
 - Use a new compiler/language that is 3x as fast
 - Be a clever programmer to eliminate half the work
 - So doing each iteration is 600x as fast as in binary search

Big-Oh relates functions

We use O on a function f(n) (for example n²) to mean *the* set of *functions* with asymptotic behavior less than or equal to f(n)

So $(3n^2+17)$ is in $O(n^2)$

- $3n^2$ +17 and n^2 have the same asymptotic behavior

Confusingly, we also say/write:

- $-(3n^2+17)$ is $O(n^2)$
- $-(3n^2+17) = O(n^2)$

But we would never say $O(n^2) = (3n^2+17)$

 To show g(n) is in O(f(n)), pick a c large enough to "cover the constant factors" and n₀ large enough to "cover the lower-order terms"

- Example: Let
$$g(n) = 3n^2 + 17$$
 and $f(n) = n^2$

c=5 and $n_0=10$ is more than good enough

 $(3^*10^2)+17 \le 5^*10^2$ so $3n^2+17$ is $O(n^2)$

- This is "less than or equal to"
 - So $3n^2$ +17 is also $O(n^5)$ and $O(2^n)$ etc.
 - But usually we're interested in the tightest upper bound.

Example 1, using formal definition

- Let g(n) = 1000n and $f(n) = n^2$
 - To prove g(n) is in O(f(n)), find a valid c and n_0
 - The "cross-over point" is n=1000
 - g(n) = 1000*1000 and f(n) = 1000²
 - So we can choose n_0 =1000 and c=1
 - Many other possible choices, e.g., larger n_o and/or c

Definition: g(n) is in O(f(n)) if there exist positive constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$

Example 2, using formal definition

- Let $g(n) = n^4$ and $f(n) = 2^n$
 - To prove g(n) is in O(f(n)), find a valid c and n_0
 - We can choose n_0 =20 and c=1
 - g(n) = 20⁴ vs. f(n) = 1*2²⁰
- Note: There are many correct possible choices of *c* and *n*₀

Definition: g(n) is in O(f(n)) if there exist positive constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$

What's with the c

- The constant multiplier *c* is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity
- Consider:

g(n) = 7n+5f(n) = n

- These have the same asymptotic behavior (linear)
 - So g(n) is in O(f(n)) even through g(n) is always larger
 - The *c* allows us to provide a coefficient so that $g(n) \le c f(n)$
- In this example:
 - To prove g(n) is in O(f(n)), have c = 12, n₀ = 1 (7*1)+5 ≤ 12*1

What you can drop

- Eliminate coefficients because we don't have units anyway
 - $3n^2$ versus $5n^2$ doesn't mean anything when we have not specified the cost of constant-time operations
- Eliminate low-order terms because they have vanishingly small impact as *n* grows
- Do NOT ignore constants that are not multipliers
 - n^3 is not $O(n^2)$
 - 3^{n} is not $O(2^{n})$

(This all follows from the formal definition)

More Asymptotic Notation

- Upper bound: O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - g(n) is in O(f(n)) if there exist constants c and n_0 such that g(n) ≤ c f(n) for all $n \ge n_0$
- Lower bound: Ω(f(n)) is the set of all functions asymptotically greater than or equal to f(n)
 - g(n) is in Ω(f(n)) if there exist constants*c*and*n*₀ such thatg(n) ≥ c f(n) for all n ≥ n₀
- Tight bound: θ(f(n)) is the set of all functions asymptotically equal to f(n)

 $\begin{array}{l} - g(n) \text{ is in } \theta(f(n)) \text{ if } \underline{both} g(n) \text{ is in } O(f(n)) \underline{and} \\ g(n) \text{ is in } \Omega(f(n)) \end{array}$

Correct terms, in theory

A common error is to say O(f(n)) when you mean $\theta(f(n))$

- Since a linear algorithm is also $O(n^5)$, it's tempting to say "this algorithm is exactly O(n)"
- That doesn't mean anything, say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- "little-oh": intersection of "big-Oh" and not "big-Theta"
 - For all c, there exists an n_0 such that... \leq
 - Example: array sum is $o(n^2)$ but not o(n)
- "little-omega": intersection of "big-Omega" and not "big-Theta"
 - For all c, there exists an n_0 such that... \geq
 - Example: array sum is $\omega(\log n)$ but not $\omega(n)$

What we are analyzing

- The most common thing to do is give an O upper bound to the worst-case running time of an algorithm
- Example: binary-search algorithm
 - Common: $O(\log n)$ running-time in the worst-case
 - Less common: $\theta(1)$ in the best-case (item is in the middle)
 - Less common (but very good to know): the find-in-sortedarray *problem* is Ω(log n) in the worst-case
 - *No* algorithm can do better
 - A *problem* cannot be O(f(n)) since you can always make a slower algorithm

Other things to analyze

- Space instead of time
 - Remember we can often use space to gain time
- Average case
 - Sometimes only if you assume something about the probability distribution of inputs
 - Sometimes uses randomization in the algorithm
 - Will see an example with sorting
 - Sometimes an *amortized guarantee*
 - Average time over any sequence of operations
 - Will discuss in a later lecture

Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
 - Or power or dollars or ...
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)

Big-Oh Caveats

- Asymptotic complexity focuses on behavior for large n and is independent of any computer / coding trick
- But you can "abuse" it to be misled about trade-offs
- Example: *n*^{1/10} vs. **log** *n*
 - Asymptotically $n^{1/10}$ grows more quickly
 - But the "cross-over" point is around 5×10^{17}
 - So if you have input size less than 2^{58} , prefer $n^{1/10}$
- For *small n*, an algorithm with worse asymptotic complexity might be faster
 - If you care about performance for small *n* then the constant factors can matter

Addendum: Timing vs. Big-Oh Summary

- Big-oh is an essential part of computer science's mathematical foundation
 - Examine the algorithm itself, not the implementation
 - Reason about (even prove) performance as a function of *n*
- Timing also has its place
 - Compare implementations
 - Focus on data sets you care about (versus worst case)
 - Determine what the constant factors "really are"

Bubble Sort

```
private static void bubbleSort(int[] intArray) {
int n = intArray.length;
                                                           0
                                                                    n-1
                                                           1
                                                                    n-2
           int temp = 0;
                                                           2
                                                                    n-3
                                                           3
           for(int i=0; i < n; i++){
                                                                    n-4
                 for(int j=1; j < (n-i); j++){
                                                                     1
                                                           n-2
                       if(intArray[j-1] > intArray[j]){
                                                           n-1
                                                                    \mathbf{0}
                            //swap the elements!
                                                           1+2+3+..+(n-2)+(n-1) =
                            temp = intArray[j-1];
                                                           n(n-1)/2 (number of
                            intArray[j-1] = intArray[j];
                            intArray[j] = temp;
                                                           iterations)
                                                           Each iteration takes c1
                                                           O(n^2)
                                     CSE 373 Spring 2015
                                                                                  26
```