
CSE373: Data Structures and Algorithms

Lecture 4: Asymptotic Analysis

Catie Baker

Spring 2015

Efficiency

• What does it mean for an algorithm to be efficient?

– We primarily care about time (and sometimes space)

• Is the following a good definition?

– “An algorithm is efficient if, when implemented, it runs

quickly on real input instances”

– Where and how well is it implemented?

– What constitutes “real input?”

– How does the algorithm scale as input size changes?

Spring 2015 2CSE373: Data Structure & Algorithms

Gauging efficiency (performance)

• Uh, why not just run the program and time it?

– Too much variability, not reliable or portable:

• Hardware: processor(s), memory, etc.

• OS, Java version, libraries, drivers

• Other programs running

• Implementation dependent

– Choice of input

• Testing (inexhaustive) may miss worst-case input

• Timing does not explain relative timing among inputs

(what happens when n doubles in size)

• Often want to evaluate an algorithm, not an implementation

– Even before creating the implementation (“coding it up”)

Spring 2015 3CSE373: Data Structure & Algorithms

Comparing algorithms

When is one algorithm (not implementation) better than another?

– Various possible answers (clarity, security, …)

– But a big one is performance: for sufficiently large inputs, runs in

less time (our focus) or less space

We will focus on large inputs because probably any algorithm is “plenty

good” for small inputs (if n is 10, probably anything is fast)

– Time difference really shows up as n grows

Answer will be independent of CPU speed, programming language,

coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up and

timing it on some test cases”

- Can do analysis before coding!

Spring 2015 4CSE373: Data Structure & Algorithms

We usually care about worst-case running times

• Has proven reasonable in practice

– Provides some guarantees

• Difficult to find a satisfactory alternative

– What about average case?

– Difficult to express full range of input

– Could we use randomly-generated input?

– May learn more about generator than algorithm

Spring 2015 5CSE373: Data Structure & Algorithms

Example

Find an integer in a sorted array

Spring 2015 6CSE373: Data Structure & Algorithms

2 3 5 16 37 50 73 75 126

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k){

???

}

Linear search

Find an integer in a sorted array

Spring 2015 7CSE373: Data Structure & Algorithms

2 3 5 16 37 50 73 75 126

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k){

for(int i=0; i < arr.length; ++i)

if(arr[i] == k)

return true;

return false;

}

Best case?

k is in arr[0]

c1 steps

= O(1)

Worst case?

k is not in arr

c2*(arr.length)

= O(arr.length)

Binary search

Find an integer in a sorted array

– Can also be done non-recursively but “doesn’t matter” here

Spring 2015 8CSE373: Data Structure & Algorithms

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
if(lo==hi) return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

}

Binary search

Spring 2015 9CSE373: Data Structure & Algorithms

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2;
if(lo==hi) return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

}

Best case: c1 steps = O(1)

Worst case: T(n) = c2 steps + T(n/2) where n is hi-lo

• O(log n) where n is array.length

• Solve recurrence equation to know that…

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

– T(n) = c2 + T(n/2) T(1) = c1

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

– T(n) = c2 + c2 + T(n/4)

= c2 + c2 + c2 + T(n/8)

= …

= c2(k) + T(n/(2k))

3. Find a closed-form expression by setting the number of expansions
to a value (e.g. 1) which reduces the problem to a base case

– n/(2k) = 1 means n = 2k means k = log2 n

– So T(n) = c2 log2 n + T(1)

– So T(n) = c2 log2 n + c1 (get to base case and do it)

– So T(n) is O(log n)

Spring 2015 10CSE373: Data Structure & Algorithms

Ignoring constant factors

• So binary search is O(log n) and linear is O(n)

– But which is faster?

• Could depend on constant factors

– How many assignments, additions, etc. for each n

• E.g. T(n) = 5,000,000n vs. T(n) = 5n2

– And could depend on overhead unrelated to n

• E.g. T(n) = 5,000,000 + log n vs. T(n) = 10 + n

• But there exists some n0 such that for all n > n0 binary search wins

• Let’s play with a couple plots to get some intuition…

Spring 2015 11CSE373: Data Structure & Algorithms

Example

• Let’s try to “help” linear search

– Run it on a computer 100x as fast (say 2014 model vs. 1994)

– Use a new compiler/language that is 3x as fast

– Be a clever programmer to eliminate half the work

– So doing each iteration is 600x as fast as in binary search

Spring 2015 12CSE373: Data Structure & Algorithms

Big-Oh relates functions

We use O on a function f(n) (for example n2) to mean the set of

functions with asymptotic behavior less than or equal to f(n)

So (3n2+17) is in O(n2)

– 3n2+17 and n2 have the same asymptotic behavior

Confusingly, we also say/write:

– (3n2+17) is O(n2)

– (3n2+17) = O(n2)

But we would never say O(n2) = (3n2+17)

Spring 2015 13CSE373: Data Structure & Algorithms

Big-O, formally

Definition: g(n) is in O(f(n)) if there exist

positive constants c and n0 such that

g(n)  c f(n) for all n  n0

• To show g(n) is in O(f(n)), pick a c large enough to “cover the constant

factors” and n0 large enough to “cover the lower-order terms”

– Example: Let g(n) = 3n2+17 and f(n) = n2

c=5 and n0 =10 is more than good enough

(3*102)+17  5*102 so 3n2+17 is O(n2)

• This is “less than or equal to”

– So 3n2+17 is also O(n5) and O(2n) etc.

• But usually we’re interested in the tightest upper bound.

Spring 2015 14CSE373: Data Structure & Algorithms

Example 1, using formal definition

• Let g(n) = 1000n and f(n) = n2

– To prove g(n) is in O(f(n)), find a valid c and n0

– The “cross-over point” is n=1000

• g(n) = 1000*1000 and f(n) = 10002

– So we can choose n0=1000 and c=1

• Many other possible choices, e.g., larger n0 and/or c

Spring 2015 15CSE373: Data Structure & Algorithms

Definition: g(n) is in O(f(n)) if there exist

positive constants c and n0 such that

g(n)  c f(n) for all n  n0

Example 2, using formal definition

• Let g(n) = n4 and f(n) = 2n

– To prove g(n) is in O(f(n)), find a valid c and n0

– We can choose n0=20 and c=1

• g(n) = 204 vs. f(n) = 1*220

• Note: There are many correct possible choices of c and n0

Spring 2015 16CSE373: Data Structure & Algorithms

Definition: g(n) is in O(f(n)) if there exist

positive constants c and n0 such that

g(n)  c f(n) for all n  n0

What’s with the c

• The constant multiplier c is what allows functions that differ only in

their largest coefficient to have the same asymptotic complexity

• Consider:

g(n) = 7n+5

f(n) = n

– These have the same asymptotic behavior (linear)

• So g(n) is in O(f(n)) even through g(n) is always larger

• The c allows us to provide a coefficient so that g(n)  c f(n)

– In this example:

• To prove g(n) is in O(f(n)), have c = 12, n0 = 1

(7*1)+5  12*1

Spring 2015 17CSE373: Data Structure & Algorithms

What you can drop

• Eliminate coefficients because we don’t have units anyway

– 3n2 versus 5n2 doesn’t mean anything when we have not

specified the cost of constant-time operations

• Eliminate low-order terms because they have vanishingly small

impact as n grows

• Do NOT ignore constants that are not multipliers

– n3 is not O(n2)

– 3n is not O(2n)

(This all follows from the formal definition)

Spring 2015 18CSE373: Data Structure & Algorithms

More Asymptotic Notation

• Upper bound: O(f(n)) is the set of all functions asymptotically

less than or equal to f(n)

– g(n) is in O(f(n)) if there exist constants c and n0 such that

g(n)  c f(n) for all n  n0

• Lower bound: (f(n)) is the set of all functions asymptotically

greater than or equal to f(n)

– g(n) is in (f(n)) if there exist constants c and n0 such that

g(n)  c f(n) for all n  n0

• Tight bound: (f(n)) is the set of all functions asymptotically

equal to f(n)

– g(n) is in (f(n)) if both g(n) is in O(f(n)) and

g(n) is in (f(n))

Spring 2015 19CSE373: Data Structure & Algorithms

Correct terms, in theory

A common error is to say O(f(n)) when you mean (f(n))

– Since a linear algorithm is also O(n5), it’s tempting to say “this

algorithm is exactly O(n)”

– That doesn’t mean anything, say it is (n)

– That means that it is not, for example O(log n)

Less common notation:

– “little-oh”: intersection of “big-Oh” and not “big-Theta”

• For all c, there exists an n0 such that… 

• Example: array sum is o(n2) but not o(n)

– “little-omega”: intersection of “big-Omega” and not “big-Theta”

• For all c, there exists an n0 such that… 

• Example: array sum is (log n) but not (n)

Spring 2015 20CSE373: Data Structure & Algorithms

What we are analyzing

• The most common thing to do is give an O upper bound to the

worst-case running time of an algorithm

• Example: binary-search algorithm

– Common: O(log n) running-time in the worst-case

– Less common: (1) in the best-case (item is in the middle)

– Less common (but very good to know): the find-in-sorted-
array problem is (log n) in the worst-case

• No algorithm can do better

• A problem cannot be O(f(n)) since you can always make

a slower algorithm

Spring 2015 21CSE373: Data Structure & Algorithms

Other things to analyze

• Space instead of time

– Remember we can often use space to gain time

• Average case

– Sometimes only if you assume something about the

probability distribution of inputs

– Sometimes uses randomization in the algorithm

• Will see an example with sorting

– Sometimes an amortized guarantee

• Average time over any sequence of operations

• Will discuss in a later lecture

Spring 2015 22CSE373: Data Structure & Algorithms

Summary

Analysis can be about:

• The problem or the algorithm (usually algorithm)

• Time or space (usually time)

– Or power or dollars or …

• Best-, worst-, or average-case (usually worst)

• Upper-, lower-, or tight-bound (usually upper or tight)

Spring 2015 23CSE373: Data Structure & Algorithms

Big-Oh Caveats

• Asymptotic complexity focuses on behavior for large n and is

independent of any computer / coding trick

• But you can “abuse” it to be misled about trade-offs

• Example: n1/10 vs. log n

– Asymptotically n1/10 grows more quickly

– But the “cross-over” point is around 5 * 1017

– So if you have input size less than 258, prefer n1/10

• For small n, an algorithm with worse asymptotic complexity

might be faster

– If you care about performance for small n then the constant

factors can matter

Spring 2015 24CSE373: Data Structure & Algorithms

Addendum: Timing vs. Big-Oh Summary

• Big-oh is an essential part of computer science’s mathematical

foundation

– Examine the algorithm itself, not the implementation

– Reason about (even prove) performance as a function of n

• Timing also has its place

– Compare implementations

– Focus on data sets you care about (versus worst case)

– Determine what the constant factors “really are”

Spring 2015 25CSE373: Data Structure & Algorithms

Bubble Sort

CSE 373 Spring 2015 26

private static void bubbleSort(int[] intArray) {

int n = intArray.length;

int temp = 0;

for(int i=0; i < n; i++){

for(int j=1; j < (n-i); j++){

if(intArray[j-1] > intArray[j]){

//swap the elements!

temp = intArray[j-1];

intArray[j-1] = intArray[j];

intArray[j] = temp;

}

}

}

}

i j

0 n-1

1 n-2

2 n-3

3 n-4

… …

n-2 1

n-1 0

1+2+3+..+(n-2)+(n-1) =

n(n-1)/2 (number of

iterations)

Each iteration takes c1

O(n2)

