

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis

Catie Baker Spring 2015

Today

- Registration should be done.
- Homework 1 due 11:59pm next Wednesday, April 8th.
- Review math essential to algorithm analysis
 - Proof by induction (another example)
 - Exponents and logarithms
 - Floor and ceiling functions
- Begin algorithm analysis

Homework 1 Clarifications

- You should have numOracles Queues for the questions to be added to (if the number of answers changes, so should the number of oracles)
- The Oracles' answers are stored in the answers array and when you dequeue a question from Oracle₀, you can get the answer to the question from answers[0]

Mathematical induction

Suppose P(n) is some statement (mentioning integer n) Example: $n \ge n/2 + 1$

We can use induction to prove P(n) for all integers $n \ge n_0$. We need to

- 1. Prove the "base case" i.e. $P(n_0)$. For us n_0 is usually 1.
- 2. Assume the statement holds for P(k).
- 3. Prove the "inductive case" i.e. if P(k) is true, then P(k+1) is true.

Why we care:

To show an algorithm is correct or has a certain running time *no matter how big a data structure or input value is* (Our "*n*" will be the data structure or input size.)

Example

 $P(n) = n \ge n/2 + 1$

We will show that P(n) holds for all $n \ge 2$

Proof: By induction on *n*

• Base case: *n*=2. 2 ≥ 2/2 + 1

 $2 \ge 1+1$ $2 \ge 2$

Example

P(*n*) =n ≥ n/2 + 1, n ≥2

- Inductive case:
 - Assume P(k) is true i.e. $k \ge k/2 + 1$
 - Show P(k+1) is true i.e. $k+1 \ge (k+1)/2 + 1$

Using our assumption, we know $k \ge k/2 + 1$ so:

$$k+1 \ge (k/2 + 1) + 1$$

$$k+1 \ge k/2 + 2$$

$$k+1 \ge k/2 + 2 \ge (k+1)/2 + 1^* \qquad *(k+1)/2 + 1 = k/2 + 1.5$$

$$k+1 \ge (k+1)/2 + 1$$

Success!

- Definition: $\mathbf{x} = 2^{\mathbf{y}}$ if $\log_2 \mathbf{x} = \mathbf{y}$
 - $-8 = 2^3$, so $\log_2 8 = 3$
 - $-65536=2^{16}$, so $\log_2 65536=16$
- The exponent of a number says how many times to use the number in a multiplication. e.g. 2³ = 2 × 2 × 2 = 8
 (2 is used 3 times in a multiplication to get 8)
- A logarithm says how many of one number to multiply to get another number. It asks "what exponent produced this?"
 e.g. log₂8 = 3 (2 makes 8 when used 3 times in a multiplication)

- Definition: $\mathbf{x} = 2^{\mathbf{y}}$ if $\log_2 \mathbf{x} = \mathbf{y}$
 - $-8 = 2^3$, so $\log_2 8 = 3$
 - $-65536=2^{16}$, so $\log_2 65536=16$
- Since so much is binary in CS, log almost always means log₂
- **log**₂ n tells you how many bits needed to represent n combinations.
- So, log₂ 1,000,000 = "a little under 20"
- Logarithms and exponents are inverse functions. Just as exponents grow very quickly, logarithms grow very slowly.

Properties of logarithms

- log(A*B) = log A + log B
- $\log(N^k) = k \log N$
- log(A/B) = log A log B
- log(log x) is written log log x
 Grows as slowly as 2^{2^y} grows quickly
- (log x) (log x) is written log^2x
 - It is greater than $\log x$ for all x > 2
 - It is not the same as log log x

Log base doesn't matter much!

"Any base B log is equivalent to base 2 log within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $\log_2 \mathbf{x} = 3.22 \log_{10} \mathbf{x}$
- In general we can convert log bases via a constant multiplier
- To convert from base B to base A:

 $\log_{B} x = (\log_{A} x) / (\log_{A} B)$

Floor and ceiling

 $\begin{bmatrix} X \end{bmatrix}$ Floor function: the largest integer $\leq X$ $\begin{bmatrix} 2.7 \end{bmatrix} = 2$ $\begin{bmatrix} -2.7 \end{bmatrix} = -3$ $\begin{bmatrix} 2 \end{bmatrix} = 2$ $\begin{bmatrix} X \end{bmatrix}$ Ceiling function: the smallest integer $\geq X$ $\begin{bmatrix} 2.3 \end{bmatrix} = 3$ $\begin{bmatrix} -2.3 \end{bmatrix} = -2$ $\begin{bmatrix} 2 \end{bmatrix} = 2$

Facts about floor and ceiling

1.
$$X-1 < \lfloor X \rfloor \le X$$

2. $X \le \lceil X \rceil < X+1$
3. $\lfloor n/2 \rfloor + \lceil n/2 \rceil = n$ if n is an integer

Algorithm Analysis

As the "size" of an algorithm's input grows (integer, length of array, size of queue, etc.), we want to know

- How much longer does the algorithm take to run? (time)
- How much more memory does the algorithm need? (space)

Because the curves we saw are so different, often care about only "which curve we are like"

Separate issue: Algorithm *correctness* – does it produce the right answer for all inputs

- Usually more important, naturally

Algorithm Analysis: A first example

• Consider the following program segment:

```
x:= 0;
for i = 1 to n do
  for j = 1 to i do
      x := x + 1;
```

- What is the value of x at the end?
- i Ĵ Χ 1 1 to 1 1 Number of times x gets incremented is 2 1 to 2 3 = 1 + 2 + 3 + ... + (n-1) + n1 to 3 3 6 $= n^{*}(n+1)/2$ 1 to 4 10 4

n 1 to n ?

. . .

Analyzing the loop

• Consider the following program segment:

```
x:= 0;
for i = 1 to n do
  for j = 1 to i do
      x := x + 1;
```

- The total number of loop iterations is n*(n+1)/2
 - This is a very common loop structure, worth memorizing
 - This is proportional to n^2 , and we say $O(n^2)$, "big-Oh of"
 - $n^{*}(n+1)/2 = (n^{2}+n)/2$
 - For large enough n, the lower order and constant terms are irrelevant, as are the assignment statements
 - See plot... (n²+ n)/2 vs. just n²/2

Lower-order terms don't matter

 $n^{*}(n+1)/2$ vs. just $n^{2}/2$

We just say $O(n^2)$

Big-O: Common Names

O(1)	constant (same as <i>O</i> (<i>k</i>) for constant <i>k</i>)
$O(\log n)$	logarithmic
<i>O</i> (<i>n</i>)	linear
O(n log <i>n</i>)	"n log <i>n</i> "
O(<i>n</i> ²)	quadratic
<i>O</i> (<i>n</i> ³)	cubic
<i>O</i> (<i>n</i> ^k)	polynomial (where is <i>k</i> is any constant)
<i>O</i> (<i>k</i> ⁿ)	exponential (where <i>k</i> is any constant > 1)
O(n!)	factorial

Note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^n for some k>1"

Big-O running times

• For a processor capable of one million instructions per second

	n	$n \log_2 n$	n ²	n ³ .	1.5 ⁿ	2 ⁿ	<i>n</i> !
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	1017 years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
<i>n</i> = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Analyzing code

Basic operations take "some amount of" constant time

- Arithmetic (fixed-width)
- Assignment
- Access one Java field or array index
- Etc.

(This is an *approximation of reality*: a very useful "lie".)

Consecutive statements Conditionals Loops Calls Recursion

Sum of times Time of test plus slower branch Sum of iterations Time of call's body Solve recurrence equation (next lecture)

Analyzing code

- 1. Add up time for all parts of the algorithm e.g. number of iterations = $(n^2 + n)/2$
- 2. Eliminate low-order terms i.e. eliminate n: $(n^2)/2$
- 3. Eliminate coefficients i.e. eliminate 1/2: (n²)

Examples:

- 4n + 5 = O(n)
- $0.5n \log n + 2n + 7$
- $n^3 + 2^n + 3n$
- $n \log(10n^2)$
 - $n\log(10) + n\log(n^2)$
 - $n\log(10) + 2n\log(n)$

= O(n log *n*)

 $= O(n \log n)$

 $= O(2^{n})$

Try a Java sorting program

```
private static void bubbleSort(int[] intArray) {
int n = intArray.length;
           int temp = 0;
           for(int i=0; i < n; i++){
                 for(int j=1; j < (n-i); j++){
                       if(intArray[j-1] > intArray[j]){
                            //swap the elements!
                            temp = intArray[j-1];
                            intArray[j-1] = intArray[j];
                            intArray[j] = temp;
                          CSE 373 Spring 2015
```