
CSE373: Data Structures & Algorithms

Lecture 27: Parallel Reductions, Maps, and

Algorithm Analysis

Catie Baker

Spring 2015

• Homework 6 due today!

– Done with all homeworks

• Course Evaluations – Time at the end of lecture

• Lecture Friday

– Final exam review

• Final exam next Tuesday in this room at 2.30pm

– Details are on the website

– Practice past midterms

This week….

Spring 2015 CSE373: Data Structures & Algorithms 2

Outline

Done:

• How to write a parallel algorithm with fork and join

• Why using divide-and-conquer with lots of small tasks is best

– Combines results in parallel

– (Assuming library can handle “lots of small threads”)

Now:

• More examples of simple parallel programs that fit the “map” or

“reduce” patterns

• Teaser: Beyond maps and reductions

• Asymptotic analysis for fork-join parallelism

• Amdahl’s Law

Spring 2015 CSE373: Data Structures & Algorithms 3

What else looks like this?

• Saw summing an array went from O(n) sequential to O(log n)

parallel (assuming a lot of processors and very large n)

– Exponential speed-up in theory (n / log n grows exponentially)

+ + + + + + + +

+ + + +

+ +

+

• Anything that can use results from two halves and merge them

in O(1) time has the same property…

Spring 2015 CSE373: Data Structures & Algorithms 4

Examples

• Maximum or minimum element

• Is there an element satisfying some property (e.g., is there a 17)?

• Left-most element satisfying some property (e.g., first 17)

• Corners of a rectangle containing all points (a “bounding box”)

• Counts, for example, number of strings that start with a vowel

– This is just summing with a different base case

– Many problems are!

Spring 2015 CSE373: Data Structures & Algorithms 5

Reductions

• Computations of this form are called reductions

• Produce single answer from collection via an associative operator

– Associative: a + (b+c) = (a+b) + c

– Examples: max, count, leftmost, rightmost, sum, product, …

– Non-examples: median, subtraction, exponentiation

Spring 2015 CSE373: Data Structures & Algorithms 6

Even easier: Maps (Data Parallelism)
• A map operates on each element of a collection independently to

create a new collection of the same size

– No combining results

– For arrays, this is so trivial some hardware has direct support

• Canonical example: Vector addition

int[] vector_add(int[] arr1, int[] arr2){
assert (arr1.length == arr2.length);
result = new int[arr1.length];
FORALL(i=0; i < arr1.length; i++) {
result[i] = arr1[i] + arr2[i];

}
return result;

}

Spring 2015 CSE373: Data Structures & Algorithms 7

input

input

6 4 16 10 16 14 2 8

2 10 6 6 2 6 8 7

output 8 14 22 16 18 20 10 15

Maps and reductions

Maps and reductions: the “workhorses” of parallel programming

– By far the two most important and common patterns

– Learn to recognize when an algorithm can be written in

terms of maps and reductions

– Use maps and reductions to describe (parallel) algorithms

– Programming them becomes “trivial” with a little practice

• Exactly like sequential for-loops seem second-nature

Spring 2015 CSE373: Data Structures & Algorithms 8

• Some problems are “inherently sequential”

“Six ovens can’t bake a pie in 10 minutes instead of an hour”

• But not all parallelizable problems are maps and reductions

• If had one more lecture, would show “parallel prefix”, a clever

algorithm to parallelize the problem that this sequential code solves

Beyond maps and reductions

Spring 2015 CSE373: Data Structures & Algorithms 9

int[] prefix_sum(int[] input){
int[] output = new int[input.length];
output[0] = input[0];
for(int i=1; i < input.length; i++)
output[i] = output[i-1]+input[i];

return output;

}

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

Digression: MapReduce on clusters

• You may have heard of Google’s “map/reduce”

– Or the open-source version Hadoop

• Idea: Perform maps/reduces on data using many machines

– The system takes care of distributing the data and managing

fault tolerance

– You just write code to map one element and reduce

elements to a combined result

• Separates how to do recursive divide-and-conquer from what

computation to perform

– Separating concerns is good software engineering

Spring 2015 CSE373: Data Structures & Algorithms 10

Analyzing algorithms

• Like all algorithms, parallel algorithms should be:

– Correct

– Efficient

• For our algorithms so far, correctness is “obvious” so we’ll focus

on efficiency

– Want asymptotic bounds

– Want to analyze the algorithm without regard to a specific

number of processors

– Here: Identify the “best we can do” if the underlying thread-

scheduler does its part

Spring 2015 CSE373: Data Structures & Algorithms 11

Work and Span

Let TP be the running time if there are P processors available

Two key measures of run-time:

• Work: How long it would take 1 processor = T1

– Just “sequentialize” the recursive forking

• Span: How long it would take infinite processors = T
– The longest dependence-chain

– Example: O(log n) for summing an array

• Notice having > n/2 processors is no additional help

Spring 2015 CSE373: Data Structures & Algorithms 12

Our simple examples

• Picture showing all the “stuff that happens” during a reduction or

a map: it’s a (conceptual!) DAG

base cases

divide

combine

results

Spring 2015 CSE373: Data Structures & Algorithms 13

Connecting to performance

• Recall: TP = running time if there are P processors available

• Work = T1 = sum of run-time of all nodes in the DAG

– That lonely processor does everything

– Any topological sort is a legal execution

– O(n) for maps and reductions

• Span = T = sum of run-time of all nodes on the most-expensive

path in the DAG

– Note: costs are on the nodes not the edges

– Our infinite army can do everything that is ready to be done,

but still has to wait for earlier results

– O(log n) for simple maps and reductions

Spring 2015 CSE373: Data Structures & Algorithms 14

Speed-up

Parallel algorithms is about decreasing span without

increasing work too much

• Speed-up on P processors: T1 / TP

• Parallelism is the maximum possible speed-up: T1 / T

– At some point, adding processors won’t help

– What that point is depends on the span

• In practice we have P processors. How well can we do?

– We cannot do better than O(T) (“must obey the span”)

– We cannot do better than O(T1 / P) (“must do all the work”)

Spring 2015 CSE373: Data Structures & Algorithms 15

Examples

TP = O(max((T1 / P) ,T))

• In the algorithms seen so far (e.g., sum an array):

– T1 = O(n)

– T= O(log n)

– So expect (ignoring overheads): TP = O(max(n/P, log n))

• Suppose instead:

– T1 = O(n2)

– T= O(n)

– So expect (ignoring overheads): TP = O(max(n2/P, n))

Spring 2015 CSE373: Data Structures & Algorithms 16

Amdahl’s Law (mostly bad news)

• So far: analyze parallel programs in terms of work and span

• In practice, typically have parts of programs that parallelize well…

– Such as maps/reductions over arrays

…and parts that don’t parallelize at all

– Such as reading a linked list, getting input, doing

computations where each needs the previous step, etc.

Spring 2015 CSE373: Data Structures & Algorithms 17

Amdahl’s Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that can’t be parallelized

Then: T1 = S + (1-S) = 1

Suppose parallel portion parallelizes perfectly (generous assumption)

Then: TP = S + (1-S)/P

So the overall speedup with P processors is (Amdahl’s Law):

T1 / TP = 1 / (S + (1-S)/P)

And the parallelism (infinite processors) is:

T1 / T = 1 / S

Spring 2015 CSE373: Data Structures & Algorithms 18

Why such bad news

T1 / TP = 1 / (S + (1-S)/P) T1 / T = 1 / S

• Suppose 33% of a program’s execution is sequential

– Then a billion processors won’t give a speedup over 3

• Suppose you miss the good old days (1980-2005) where 12ish

years was long enough to get 100x speedup

– Now suppose in 12 years, clock speed is the same but you

get 256 processors instead of 1

– For 256 processors to get at least 100x speedup, we need

100 1 / (S + (1-S)/256)

Which means S .0061 (i.e., 99.4% perfectly parallelizable)

Spring 2015 CSE373: Data Structures & Algorithms 19

All is not lost

Amdahl’s Law is a bummer!

– Unparallelized parts become a bottleneck very quickly

– But it doesn’t mean additional processors are worthless

• We can find new parallel algorithms

– Some things that seem sequential are actually parallelizable

• We can change the problem or do new things

– Example: computer graphics use tons of parallel processors

• Graphics Processing Units (GPUs) are massively parallel

• They are not rendering 10-year-old graphics faster

• They are rendering more detailed/sophisticated images

Spring 2015 CSE373: Data Structures & Algorithms 20

Moore and Amdahl

• Moore’s “Law” is an observation about the progress of the

semiconductor industry

– Transistor density doubles roughly every 18 months

• Amdahl’s Law is a mathematical theorem

– Diminishing returns of adding more processors

• Both are incredibly important in designing computer systems

Spring 2015 CSE373: Data Structures & Algorithms 21

• PLEASE do them

– I’m giving you time now

• What you liked, what you didn’t like

• https://uw.iasystem.org/survey/146029

Course evals….

Spring 2015 CSE373: Data Structures & Algorithms 22

