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Admin

• Homework 5 partner selection due on Wednesday

– Catalyst link posted on the webpage

• START SOON!!
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Introduction to Sorting

• Stacks, queues, priority queues, and dictionaries all focused on 

providing one element at a time

• But often we know we want “all the things” in some order

– Humans can sort, but computers can sort fast

– Very common to need data sorted somehow

• Alphabetical list of people

• List of countries ordered by population

• Search engine results by relevance

• …

• Algorithms have different asymptotic and constant-factor trade-offs

– No single “best” sort for all scenarios

– Knowing one way to sort just isn’t enough
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More Reasons to Sort

General technique in computing: 

Preprocess data to make subsequent operations faster

Example: Sort the data so that you can

– Find the kth largest in constant time for any k

– Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters depends on

– How often the data will change (and how much it will change)

– How much data there is
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Why Study Sorting in this Class?

• Unlikely you will ever need to reimplement a sorting algorithm yourself

– Standard libraries will generally implement one or more (Java 

implements 2)

• You will almost certainly use sorting algorithms

– Important to understand relative merits and expected performance

• Excellent set of algorithms for practicing analysis and comparing design 

techniques

– Classic part of a data structures class, so you’ll be expected to know it
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The main problem, stated carefully

For now, assume we have n comparable elements in an array and 

we want to rearrange them to be in increasing order

Input:

– An array A of data records

– A key value in each data record

– A comparison function (consistent and total)

Effect:

– Reorganize the elements of A such that for any i and j,       

if i < j then A[i]  A[j]

– (Also, A must have exactly the same data it started with)

– Could also sort in reverse order, of course

An algorithm doing this is a comparison sort
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Variations on the Basic Problem

1. Maybe elements are in a linked list (could convert to array and  

back in linear time, but some algorithms needn’t do so)

2. Maybe ties need to be resolved by “original array position”

– Sorts that do this naturally are called stable sorts

– Others could tag each item with its original position and 

adjust comparisons accordingly (non-trivial constant factors)

3. Maybe we must not use more than O(1) “auxiliary space”

– Sorts meeting this requirement are called in-place sorts

4. Maybe we can do more with elements than just compare

– Sometimes leads to faster algorithms

5. Maybe we have too much data to fit in memory

– Use an “external sorting” algorithm
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Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:
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Insertion Sort
• Idea: At step k, put the kth element in the correct position among 

the first k elements

• Alternate way of saying this:

– Sort first two elements

– Now insert 3rd element in order

– Now insert 4th element in order

– …

• “Loop invariant”: when loop index is i, first i elements are sorted

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html)

• Time? 

Best-case  _____     Worst-case  _____     “Average” case ____
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Insertion Sort
• Idea: At step k, put the kth element in the correct position among 

the first k elements

• Alternate way of saying this:

– Sort first two elements

– Now insert 3rd element in order

– Now insert 4th element in order

– …

• “Loop invariant”: when loop index is i, first i elements are sorted

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html)

• Time? 

Best-case   O(n) Worst-case   O(n2) “Average” case   O(n2)

start sorted           start reverse sorted       (see text)  
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Selection sort

• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k

• Alternate way of saying this:

– Find smallest element, put it 1st

– Find next smallest element, put it 2nd

– Find next smallest element, put it 3rd …

• “Loop invariant”: when loop index is i, first i elements are the i

smallest elements in sorted order

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html)

• Time? 

Best-case  _____     Worst-case  _____     “Average” case ____

Spring 2015 11CSE373: Data Structures & Algorithms

http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html


Selection sort

• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k

• Alternate way of saying this:

– Find smallest element, put it 1st

– Find next smallest element, put it 2nd

– Find next smallest element, put it 3rd …

• “Loop invariant”: when loop index is i, first i elements are the i

smallest elements in sorted order

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html)

• Time? 

Best-case  O(n2) Worst-case O(n2) “Average” case O(n2)

Always T(1) = 1 and T(n) = n + T(n-1)
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Insertion Sort vs. Selection Sort

• Different algorithms

• Solve the same problem

• Have the same worst-case and average-case asymptotic 

complexity

– Insertion-sort has better best-case complexity; preferable 

when input is “mostly sorted”

• Other algorithms are more efficient for large arrays that are not

already almost sorted

– Insertion sort may do well on small arrays
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Aside: We Will Not Cover Bubble Sort

• It is not, in my opinion, what a “normal person” would think of

• It doesn’t have good asymptotic complexity: O(n2)

• It’s not particularly efficient with respect to constant factors

Basically, almost everything it is good at some other algorithm is at 

least as good at

– Perhaps people teach it just because someone taught it to 

them?

Fun, short, optional read: 

Bubble Sort: An Archaeological Algorithmic Analysis, Owen Astrachan, 

SIGCSE 2003, http://www.cs.duke.edu/~ola/bubble/bubble.pdf
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The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…
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Heap sort

• Sorting with a heap is easy:

– insert each arr[i], or better yet use buildHeap

– for(i=0; i < arr.length; i++) 

arr[i] = deleteMin();

• Worst-case running time: O(n log n)

• We have the array-to-sort and the heap

– So this is not an in-place sort

– There’s a trick to make it in-place…
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In-place heap sort

– Treat the initial array as a heap (via buildHeap)

– When you delete the ith element, put it at arr[n-i]

• That array location isn’t needed for the heap anymore!
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4 7 5 9 8 6 10 3 2 1

sorted partheap part

arr[n-i]=

deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted partheap part

But this reverse sorts –

how would you fix that?



“AVL sort”

• We can also use a balanced tree to:

– insert each element: total time O(n log n)

– Repeatedly deleteMin: total time O(n log n)

• Better: in-order traversal O(n), but still O(n log n) overall

• But this cannot be made in-place and has worse constant 

factors than heap sort

– both are O(n log n) in worst, best, and average case

– neither parallelizes well

– heap sort is better

Spring 2015 18CSE373: Data Structures & Algorithms



“Hash sort”???

• Don’t even think about trying to sort with a hash table!

• Finding min item in a hashtable is O(n), so this would be a 

slower, more complicated selection sort

• And we’ve already seen that selection sort is pretty bad!
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Divide and conquer

Very important technique in algorithm design

1. Divide problem into smaller parts

2. Independently solve the simpler parts 

– Think recursion

– Or potential parallelism

3. Combine solution of parts to produce overall solution

(This technique has a long history.)
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Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursively)

Sort the right half of the elements (recursively)

Merge the two sorted halves into a sorted whole

2. Quicksort: Pick a “pivot” element 

Divide elements into less-than pivot 

and greater-than pivot

Sort the two divisions (recursively on each)

Answer is 

sorted-less-than then pivot then sorted-greater-than
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Merge sort

• To sort array from position lo to position hi:

– If range is 1 element long, it is already sorted! (Base case)

– Else: 

• Sort from lo to (hi+lo)/2

• Sort from (hi+lo)/2 to hi

• Merge the two halves together

• Merging takes two sorted parts and sorts everything

– O(n) but requires auxiliary space…
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Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

(After merge, 

copy back to 

original array)



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1

(After merge, 

copy back to 

original array)



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2

(After merge, 

copy back to 

original array)



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3

(After merge, 

copy back to 

original array)



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4

(After merge, 

copy back to 

original array)



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5

(After merge, 

copy back to 

original array)



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6

(After merge, 

copy back to 

original array)



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8

(After merge, 

copy back to 

original array)



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8 9

(After merge, 

copy back to 

original array)



Example, focus on merging

Start with: 
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8 2 9 4 5 3 1 6

After recursion:

(not magic )

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8 9

(After merge, 

copy back to 

original array)

1 2 3 4 5 6 8 9



Example, Showing Recursion
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8  2   9   4 5   3   1   6

8   2 1   69   4 5   3

8 2

2   8

2   4   8   9

1   2   3   4   5   6   8   9

Merge

Merge

Merge

Divide

Divide

Divide

1 Element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4    9 3   5 1   6

1   3   5   6



Merge sort visualization

• http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
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Some details: saving a little time
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• What if the final steps of our merge looked like this:

• Wasteful to copy to the auxiliary array just to copy back…

2 4 5 6 1 3 8 9

1 2 3 4 5 6

Main array

Auxiliary array



Some details: saving a little time

• If left-side finishes first, just stop the merge and copy back:

• If right-side finishes first, copy dregs into right then copy back
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copy

first

second



Some details: Saving Space and Copying

Simplest / Worst: 

Use a new auxiliary array of size (hi-lo) for every merge

Better:

Use a new auxiliary array of size n for every merging stage

Better:

Reuse same auxiliary array of size n for every merging stage

Best (but a little tricky):

Don’t copy back – at 2nd, 4th, 6th, … merging stages, use the 

original array as the auxiliary array and vice-versa

– Need one copy at end if number of stages is odd
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Swapping Original / Auxiliary Array (“best”)

(Arguably easier to code up without recursion at all)
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Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Copy if Needed

• First recurse down to lists of size 1

• As we return from the recursion, swap between arrays



Linked lists and big data

We defined sorting over an array, but sometimes you want to sort 

linked lists

One approach:

– Convert to array: O(n)

– Sort: O(n log n)

– Convert back to list: O(n)

Or merge sort works very nicely on linked lists directly

– Heapsort and quicksort do not

– Insertion sort and selection sort do but they’re slower

Merge sort is also the sort of choice for external sorting

– Linear merges minimize disk accesses

– And can leverage multiple disks to get streaming accesses
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Analysis

Having defined an algorithm and argued it is correct, we should 

analyze its running time and space:

To sort n elements, we:

– Return immediately if n=1

– Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation:

T(1) = c1

T(n) = 2T(n/2) + c2n
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Analysis intuitively

This recurrence is common you just “know” it’s O(n log n)

Merge sort is relatively easy to intuit (best, worst, and average):

• The recursion “tree” will have log n height

• At each level we do a total amount of merging equal to n
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Analysis more formally 
(One of the recurrence classics)

For simplicity let constants be 1 (no effect on asymptotic answer)

T(1) = 1                                            So total is 2kT(n/2k) + kn where

T(n) = 2T(n/2) + n                                   n/2k = 1, i.e., log n = k   

= 2(2T(n/4) + n/2) + n               That is, 2log n T(1) + n log n

= 4T(n/4) + 2n                                     = n + n log n

= 4(2T(n/8) + n/4) + 2n                        = O(n log n)

= 8T(n/8) + 3n

….

= 2kT(n/2k) + kn
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Next lecture

• Quick sort 
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