
CSE373: Data Structure & Algorithms

Lecture 21: Comparison Sorting

Catie Baker

Spring 2015

Admin

• Homework 5 partner selection due on Wednesday

– Catalyst link posted on the webpage

• START SOON!!

Spring 2015 2CSE373: Data Structures & Algorithms

Introduction to Sorting

• Stacks, queues, priority queues, and dictionaries all focused on

providing one element at a time

• But often we know we want “all the things” in some order

– Humans can sort, but computers can sort fast

– Very common to need data sorted somehow

• Alphabetical list of people

• List of countries ordered by population

• Search engine results by relevance

• …

• Algorithms have different asymptotic and constant-factor trade-offs

– No single “best” sort for all scenarios

– Knowing one way to sort just isn’t enough

Spring 2015 3CSE373: Data Structures & Algorithms

More Reasons to Sort

General technique in computing:

Preprocess data to make subsequent operations faster

Example: Sort the data so that you can

– Find the kth largest in constant time for any k

– Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters depends on

– How often the data will change (and how much it will change)

– How much data there is

Spring 2015 4CSE373: Data Structures & Algorithms

Why Study Sorting in this Class?

• Unlikely you will ever need to reimplement a sorting algorithm yourself

– Standard libraries will generally implement one or more (Java

implements 2)

• You will almost certainly use sorting algorithms

– Important to understand relative merits and expected performance

• Excellent set of algorithms for practicing analysis and comparing design

techniques

– Classic part of a data structures class, so you’ll be expected to know it

Spring 2015 5CSE373: Data Structures & Algorithms

The main problem, stated carefully

For now, assume we have n comparable elements in an array and

we want to rearrange them to be in increasing order

Input:

– An array A of data records

– A key value in each data record

– A comparison function (consistent and total)

Effect:

– Reorganize the elements of A such that for any i and j,

if i < j then A[i] A[j]

– (Also, A must have exactly the same data it started with)

– Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

Spring 2015 6CSE373: Data Structures & Algorithms

Variations on the Basic Problem

1. Maybe elements are in a linked list (could convert to array and

back in linear time, but some algorithms needn’t do so)

2. Maybe ties need to be resolved by “original array position”

– Sorts that do this naturally are called stable sorts

– Others could tag each item with its original position and

adjust comparisons accordingly (non-trivial constant factors)

3. Maybe we must not use more than O(1) “auxiliary space”

– Sorts meeting this requirement are called in-place sorts

4. Maybe we can do more with elements than just compare

– Sometimes leads to faster algorithms

5. Maybe we have too much data to fit in memory

– Use an “external sorting” algorithm

Spring 2015 7CSE373: Data Structures & Algorithms

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

Spring 2015 8CSE373: Data Structures & Algorithms

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort

…

Bucket sort

Radix sort

External

sorting

Insertion Sort
• Idea: At step k, put the kth element in the correct position among

the first k elements

• Alternate way of saying this:

– Sort first two elements

– Now insert 3rd element in order

– Now insert 4th element in order

– …

• “Loop invariant”: when loop index is i, first i elements are sorted

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html)

• Time?

Best-case _____ Worst-case _____ “Average” case ____

Spring 2015 9CSE373: Data Structures & Algorithms

http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Insertion Sort
• Idea: At step k, put the kth element in the correct position among

the first k elements

• Alternate way of saying this:

– Sort first two elements

– Now insert 3rd element in order

– Now insert 4th element in order

– …

• “Loop invariant”: when loop index is i, first i elements are sorted

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html)

• Time?

Best-case O(n) Worst-case O(n2) “Average” case O(n2)

start sorted start reverse sorted (see text)

Spring 2015 10CSE373: Data Structures & Algorithms

http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Selection sort

• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k

• Alternate way of saying this:

– Find smallest element, put it 1st

– Find next smallest element, put it 2nd

– Find next smallest element, put it 3rd …

• “Loop invariant”: when loop index is i, first i elements are the i

smallest elements in sorted order

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html)

• Time?

Best-case _____ Worst-case _____ “Average” case ____

Spring 2015 11CSE373: Data Structures & Algorithms

http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Selection sort

• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k

• Alternate way of saying this:

– Find smallest element, put it 1st

– Find next smallest element, put it 2nd

– Find next smallest element, put it 3rd …

• “Loop invariant”: when loop index is i, first i elements are the i

smallest elements in sorted order

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html)

• Time?

Best-case O(n2) Worst-case O(n2) “Average” case O(n2)

Always T(1) = 1 and T(n) = n + T(n-1)

Spring 2015 12CSE373: Data Structures & Algorithms

http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Insertion Sort vs. Selection Sort

• Different algorithms

• Solve the same problem

• Have the same worst-case and average-case asymptotic

complexity

– Insertion-sort has better best-case complexity; preferable

when input is “mostly sorted”

• Other algorithms are more efficient for large arrays that are not

already almost sorted

– Insertion sort may do well on small arrays

Spring 2015 13CSE373: Data Structures & Algorithms

Aside: We Will Not Cover Bubble Sort

• It is not, in my opinion, what a “normal person” would think of

• It doesn’t have good asymptotic complexity: O(n2)

• It’s not particularly efficient with respect to constant factors

Basically, almost everything it is good at some other algorithm is at

least as good at

– Perhaps people teach it just because someone taught it to

them?

Fun, short, optional read:

Bubble Sort: An Archaeological Algorithmic Analysis, Owen Astrachan,

SIGCSE 2003, http://www.cs.duke.edu/~ola/bubble/bubble.pdf

Spring 2015 14CSE373: Data Structures & Algorithms

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Spring 2015 15CSE373: Data Structures & Algorithms

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

Heap sort

• Sorting with a heap is easy:

– insert each arr[i], or better yet use buildHeap

– for(i=0; i < arr.length; i++)

arr[i] = deleteMin();

• Worst-case running time: O(n log n)

• We have the array-to-sort and the heap

– So this is not an in-place sort

– There’s a trick to make it in-place…

Spring 2015 16CSE373: Data Structures & Algorithms

In-place heap sort

– Treat the initial array as a heap (via buildHeap)

– When you delete the ith element, put it at arr[n-i]

• That array location isn’t needed for the heap anymore!

Spring 2015 17CSE373: Data Structures & Algorithms

4 7 5 9 8 6 10 3 2 1

sorted partheap part

arr[n-i]=

deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted partheap part

But this reverse sorts –

how would you fix that?

“AVL sort”

• We can also use a balanced tree to:

– insert each element: total time O(n log n)

– Repeatedly deleteMin: total time O(n log n)

• Better: in-order traversal O(n), but still O(n log n) overall

• But this cannot be made in-place and has worse constant

factors than heap sort

– both are O(n log n) in worst, best, and average case

– neither parallelizes well

– heap sort is better

Spring 2015 18CSE373: Data Structures & Algorithms

“Hash sort”???

• Don’t even think about trying to sort with a hash table!

• Finding min item in a hashtable is O(n), so this would be a

slower, more complicated selection sort

• And we’ve already seen that selection sort is pretty bad!

Spring 2015 19CSE373: Data Structures & Algorithms

Divide and conquer

Very important technique in algorithm design

1. Divide problem into smaller parts

2. Independently solve the simpler parts

– Think recursion

– Or potential parallelism

3. Combine solution of parts to produce overall solution

(This technique has a long history.)

Spring 2015 20CSE373: Data Structures & Algorithms

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursively)

Sort the right half of the elements (recursively)

Merge the two sorted halves into a sorted whole

2. Quicksort: Pick a “pivot” element

Divide elements into less-than pivot

and greater-than pivot

Sort the two divisions (recursively on each)

Answer is

sorted-less-than then pivot then sorted-greater-than

Spring 2015 21CSE373: Data Structures & Algorithms

Merge sort

• To sort array from position lo to position hi:

– If range is 1 element long, it is already sorted! (Base case)

– Else:

• Sort from lo to (hi+lo)/2

• Sort from (hi+lo)/2 to hi

• Merge the two halves together

• Merging takes two sorted parts and sorts everything

– O(n) but requires auxiliary space…

Spring 2015 22CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

Example, focus on merging

Start with:

Spring 2015 23CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

(After merge,

copy back to

original array)

Example, focus on merging

Start with:

Spring 2015 24CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1

(After merge,

copy back to

original array)

Example, focus on merging

Start with:

Spring 2015 25CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2

(After merge,

copy back to

original array)

Example, focus on merging

Start with:

Spring 2015 26CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3

(After merge,

copy back to

original array)

Example, focus on merging

Start with:

Spring 2015 27CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4

(After merge,

copy back to

original array)

Example, focus on merging

Start with:

Spring 2015 28CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5

(After merge,

copy back to

original array)

Example, focus on merging

Start with:

Spring 2015 29CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6

(After merge,

copy back to

original array)

Example, focus on merging

Start with:

Spring 2015 30CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8

(After merge,

copy back to

original array)

Example, focus on merging

Start with:

Spring 2015 31CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8 9

(After merge,

copy back to

original array)

Example, focus on merging

Start with:

Spring 2015 32CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8 9

(After merge,

copy back to

original array)

1 2 3 4 5 6 8 9

Example, Showing Recursion

Spring 2015 33CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

2 8

2 4 8 9

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 Element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

1 3 5 6

Merge sort visualization

• http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Spring 2015 34CSE373: Data Structures & Algorithms

http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Some details: saving a little time

Spring 2015 35CSE373: Data Structures & Algorithms

• What if the final steps of our merge looked like this:

• Wasteful to copy to the auxiliary array just to copy back…

2 4 5 6 1 3 8 9

1 2 3 4 5 6

Main array

Auxiliary array

Some details: saving a little time

• If left-side finishes first, just stop the merge and copy back:

• If right-side finishes first, copy dregs into right then copy back

Spring 2015 36CSE373: Data Structures & Algorithms

copy

first

second

Some details: Saving Space and Copying

Simplest / Worst:

Use a new auxiliary array of size (hi-lo) for every merge

Better:

Use a new auxiliary array of size n for every merging stage

Better:

Reuse same auxiliary array of size n for every merging stage

Best (but a little tricky):

Don’t copy back – at 2nd, 4th, 6th, … merging stages, use the

original array as the auxiliary array and vice-versa

– Need one copy at end if number of stages is odd

Spring 2015 37CSE373: Data Structures & Algorithms

Swapping Original / Auxiliary Array (“best”)

(Arguably easier to code up without recursion at all)

Spring 2015 38CSE373: Data Structures & Algorithms

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Copy if Needed

• First recurse down to lists of size 1

• As we return from the recursion, swap between arrays

Linked lists and big data

We defined sorting over an array, but sometimes you want to sort

linked lists

One approach:

– Convert to array: O(n)

– Sort: O(n log n)

– Convert back to list: O(n)

Or merge sort works very nicely on linked lists directly

– Heapsort and quicksort do not

– Insertion sort and selection sort do but they’re slower

Merge sort is also the sort of choice for external sorting

– Linear merges minimize disk accesses

– And can leverage multiple disks to get streaming accesses

Spring 2015 39CSE373: Data Structures & Algorithms

Analysis

Having defined an algorithm and argued it is correct, we should

analyze its running time and space:

To sort n elements, we:

– Return immediately if n=1

– Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation:

T(1) = c1

T(n) = 2T(n/2) + c2n

Spring 2015 40CSE373: Data Structures & Algorithms

Analysis intuitively

This recurrence is common you just “know” it’s O(n log n)

Merge sort is relatively easy to intuit (best, worst, and average):

• The recursion “tree” will have log n height

• At each level we do a total amount of merging equal to n

Spring 2015 41CSE373: Data Structures & Algorithms

Analysis more formally
(One of the recurrence classics)

For simplicity let constants be 1 (no effect on asymptotic answer)

T(1) = 1 So total is 2kT(n/2k) + kn where

T(n) = 2T(n/2) + n n/2k = 1, i.e., log n = k

= 2(2T(n/4) + n/2) + n That is, 2log n T(1) + n log n

= 4T(n/4) + 2n = n + n log n

= 4(2T(n/8) + n/4) + 2n = O(n log n)

= 8T(n/8) + 3n

….

= 2kT(n/2k) + kn

Spring 2015 42CSE373: Data Structures & Algorithms

Next lecture

• Quick sort

Spring 2015 43CSE373: Data Structures & Algorithms

