



#### CSE373: Data Structures and Algorithms Lecture 2: Proof by Induction

Catie Baker Spring 2015

## **Background on Induction**

- Type of mathematical proof
- Typically used to establish a given statement for all natural numbers (e.g. integers > 0)
- Proof is a sequence of deductive steps
  - 1. Show the statement is true for the first number.
  - 2. Show that if the statement is true for any one number, this implies the statement is true for the next number.
  - 3. If so, we can infer that the statement is true for all numbers.

## Think about climbing a ladder



1. Show you can get to the first rung (base case)

2. Show you can get between rungs (inductive step)

3. Now you can climb forever.

## Why you should care

- Induction turns out to be a useful technique
  - AVL trees
  - Heaps
  - Graph algorithms
  - Can also prove things like  $3^n > n^3$  for  $n \ge 4$
- Exposure to rigorous thinking

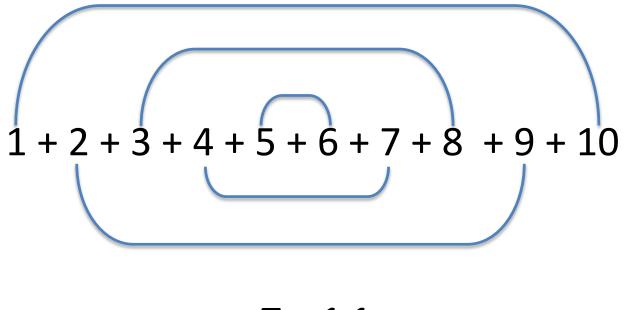
## Example problem

- Find the sum of the integers from 1 to n
- 1 + 2 + 3 + 4 + ... + (n-1) + n

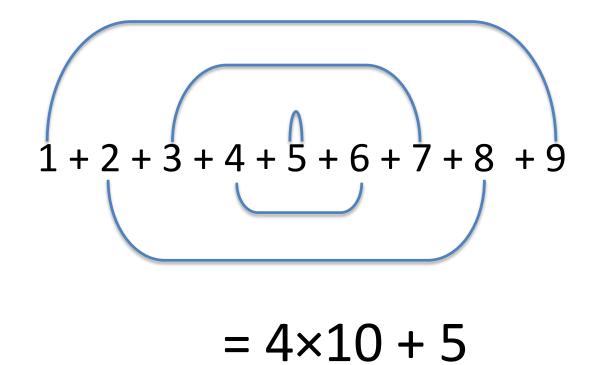
$$\overset{n}{\overset{n}{a}}i$$

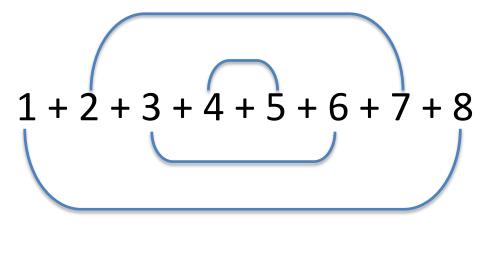
- For any  $n \ge 1$
- Could use brute force, but would be slow
- There's probably a clever shortcut

- Shortcut will be some formula involving *n*
- Compare examples and look for patterns
  Not something I will ask you to do!
- Start with n = 10:
  - 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
  - Large enough to be a pain to add up
  - Worthwhile to find shortcut

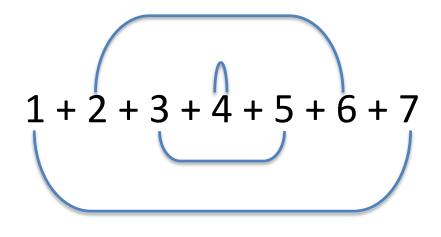


= 5×11





 $= 4 \times 9$ 

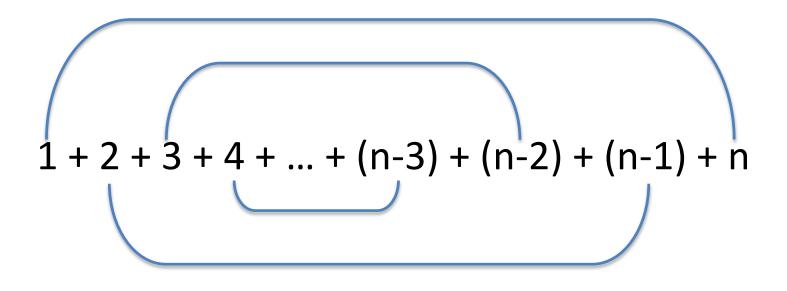


 $= 3 \times 8 + 4$ 

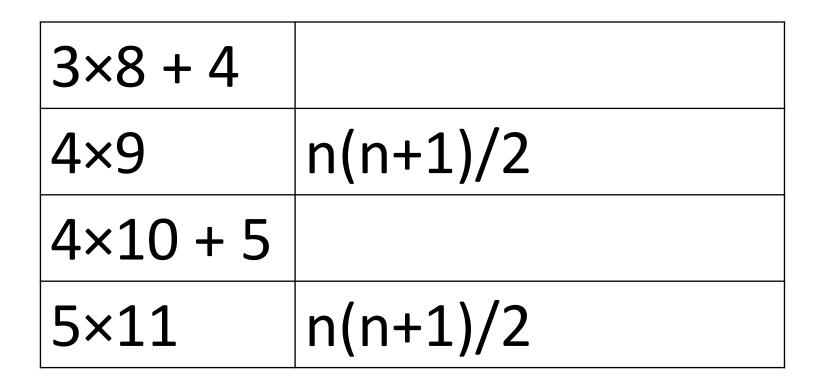
| n=7  | 3×8 + 4  |
|------|----------|
| n=8  | 4×9      |
| n=9  | 4×10 + 5 |
| n=10 | 5×11     |

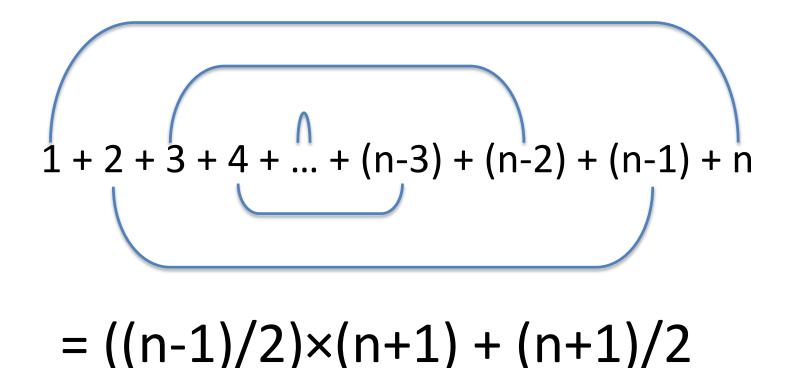
| n=7  | 3×8 + 4  | n is odd  |
|------|----------|-----------|
| n=8  | 4×9      | n is even |
| n=9  | 4×10 + 5 | n is odd  |
| n=10 | 5×11     | n is even |

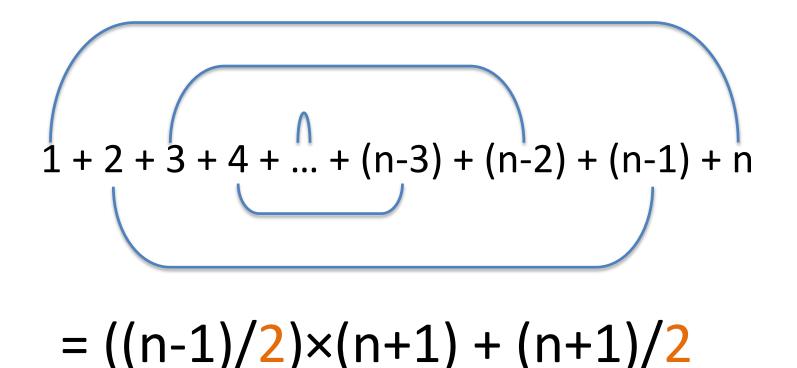
When n is even

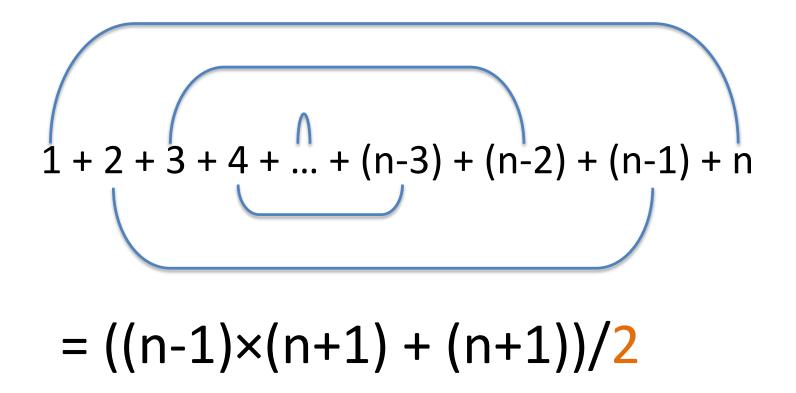


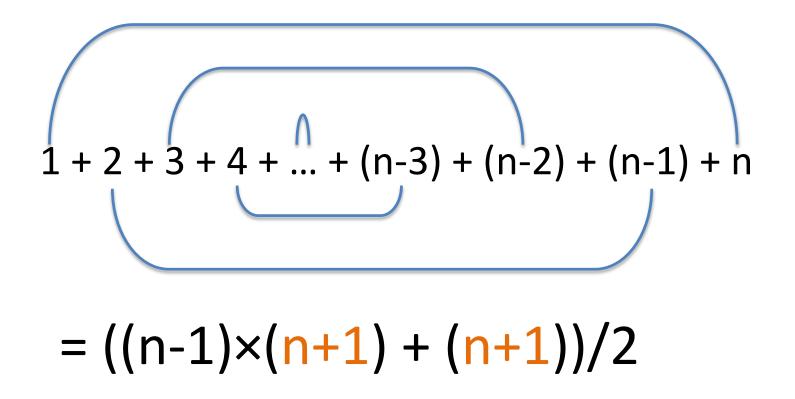
 $= (n/2) \times (n+1)$ 

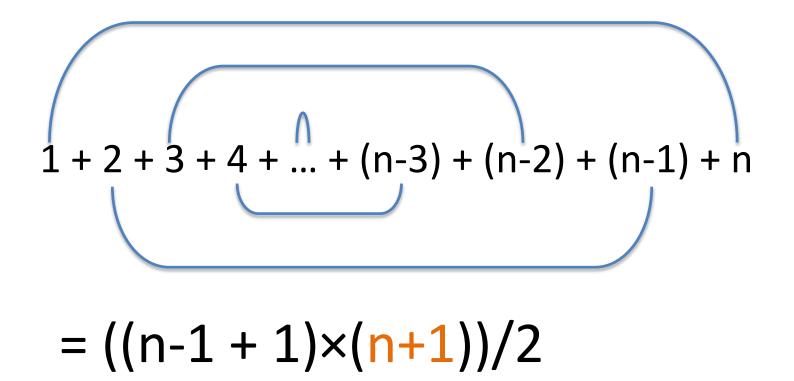


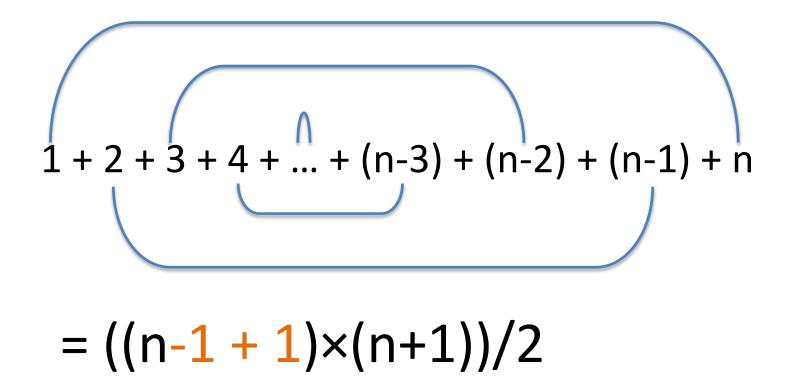




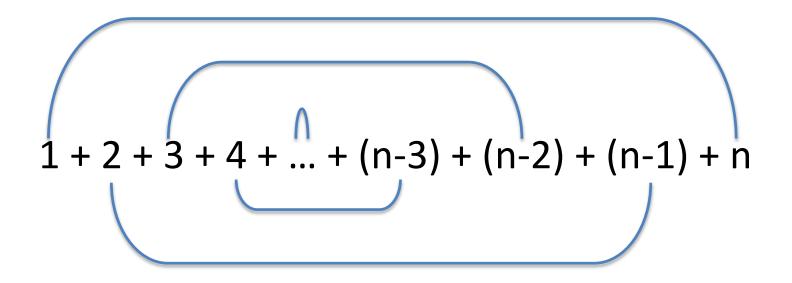








When n is odd



## = (n (n+1))/2

| 3×8 + 4  | n(n+1)/2 |
|----------|----------|
| 4×9      | n(n+1)/2 |
| 4×10 + 5 | n(n+1)/2 |
| 5×11     | n(n+1)/2 |

#### Are we done?

- The pattern seems pretty clear
  Is there any reason to think it changes?
- But we want something for any  $n \ge 1$
- A mathematical approach is skeptical

n(n + 1)

#### Are we done?

- The pattern seems pretty clear
  - Is there any reason to think it changes?
- But we want something for any  $n \ge 1$
- A mathematical approach is *skeptical*
- All we know is n(n+1)/2 works for 7 to 10
- We must *prove* the formula works in all cases
  A *rigorous* proof

- Prove the formula works for all cases.
- Induction proofs have four components:
- 1. The thing you want to prove, e.g., sum of integers from 1 to n = n(n+1)/2
- 2. The base case (usually "let n = 1"),
- 3. The assumption step ("assume true for n = k")
- 4. The induction step ("now let n = k + 1").

#### *n* and *k* are just *variables*!

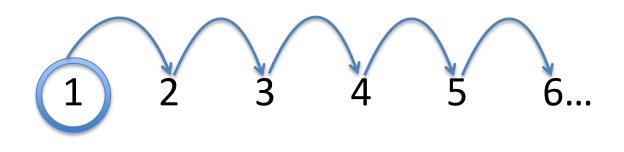
- P(n) = sum of integers from 1 to n
- We need to do
  - Base case
  - Assumption
  - Induction step

prove for P(1) assume for P(k) show for P(k+1)

n and k are just variables!

- P(n) = sum of integers from 1 to n
- We need to do
  - Base case
  - Assumption
  - Induction step

prove for P(1) assume for P(k) show for P(k+1)



- What we are trying to prove: P(n) = n(n+1)/2
- Base case
  - -P(1) = 1
  - -1(1+1)/2 = 1(2)/2 = 1(1) = 1

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
  - Now consider P(k+1)
  - $= 1 + 2 + \dots + k + (k+1)$

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k:  $P(k) = \frac{k(k+1)}{2}$
- Induction step:
  - Now consider P(k+1)
  - = 1 + 2 + ... + k + (k+1)

 $= \frac{k(k+1)}{2} + (k+1)$ 

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
  - Now consider P(k+1)
  - $= 1 + 2 + \dots + k + (k+1)$
  - = k(k+1)/2 + (k+1)/2
  - $= k(k+1)/2 + \frac{2(k+1)}{2}$

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
  - Now consider P(k+1)
  - $= 1 + 2 + \dots + k + (k+1)$
  - = k(k+1)/2 + (k+1)
  - = k(k+1)/2 + 2(k+1)/2 = (k(k+1) + 2(k+1))/2

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
  - Now consider P(k+1)
  - $= 1 + 2 + \dots + k + (k+1)$
  - = k(k+1)/2 + (k+1)
  - = k(k+1)/2 + 2(k+1)/2 = (k(k+1) + 2(k+1))/2

= (k+1)(k+2)/2

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
  - Now consider P(k+1)
  - $= 1 + 2 + \dots + k + (k+1)$
  - = k(k+1)/2 + (k+1)
  - = k(k+1)/2 + 2(k+1)/2 = (k(k+1) + 2(k+1))/2

= (k+1)(k+2)/2

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
  - Now consider P(k+1)
  - $= 1 + 2 + \dots + k + (k+1)$
  - = k(k+1)/2 + (k+1)
  - = k(k+1)/2 + 2(k+1)/2 = (k(k+1) + 2(k+1))/2
  - = (k+1)(k+2)/2 = (k+1)((k+1)+1)/2

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
  - Now consider P(k+1)
  - $= 1 + 2 + \dots + k + (k+1)$
  - = k(k+1)/2 + (k+1)
  - = k(k+1)/2 + 2(k+1)/2 = (k(k+1) + 2(k+1))/2
  - = (k+1)(k+2)/2 = (k+1)((k+1)+1)/2

## We're done!

- P(n) = sum of integers from 1 to n
- We have shown
  - Base case
  - Assumption
  - Induction step

proved for P(1) assumed for P(k) proved for P(k+1)

Success: we have proved that P(n) is true for any  $n \ge 1 \bigcirc$ 

#### Another one to try

- What is the sum of the first *n* powers of 2?
- $2^0 + 2^1 + 2^2 + \dots + 2^{n-1}$
- $k = 1: 2^0 = 1$
- $k = 2: 2^0 + 2^1 = 1 + 2 = 3$
- $k = 3: 2^0 + 2^1 + 2^2 = 1 + 2 + 4 = 7$
- $k = 4: 2^0 + 2^1 + 2^2 + 2^3 = 1 + 2 + 4 + 8 = 15$
- For general n, the sum is 2<sup>n</sup> 1

## How to prove it

P(n) = "the sum of the first *n* powers of 2 (starting at 0) is 2<sup>n</sup>-1"

Theorem: P(n) holds for all  $n \ge 1$ Proof: By induction on n

- Base case: n=1. Sum of first 1 power of 2 is 2<sup>0</sup>, which equals 1 = 2<sup>1</sup> - 1.
- Inductive case:
  - Assume the sum of the first k powers of 2 is  $2^{k}-1$
  - Show the sum of the first (k+1) powers of 2 is  $2^{k+1}-1$

#### How to prove it

• The sum of the first k+1 powers of 2 is  $2^{0} + 2^{1} + 2^{2} + ... + 2^{(k-1)} + 2^{k}$ 

sum of the first k powers of 2

by inductive hypothesis

 $= 2^{k} - 1 + 2^{k}$  $= 2(2^{k}) - 1 = 2^{k+1} - 1$ 

## Conclusion

- Mathematical induction is a technique for proving something is true for all integers starting from a small one, usually 0 or 1.
- A proof consists of three parts:
  - 1. Prove it for the base case.
  - 2. Assume it for some integer k.
  - 3. With that assumption, show it holds for k+1
- It can be used for complexity and correctness analyses.

#### End of Inductive Proofs!



## Powers of 2

- A bit is 0 or 1 (just two different "letters" or "symbols")
- A sequence of n bits can represent 2<sup>n</sup> distinct things
  For example, the numbers 0 through 2<sup>n</sup>-1
- 2<sup>10</sup> is 1024 ("about a thousand", kilo in CSE speak)
- 2<sup>20</sup> is "about a million", mega in CSE speak
- 2<sup>30</sup> is "about a billion", giga in CSE speak

# Java: an **int** is 32 bits and signed, so "max int" is "about 2 billion"

a **long** is 64 bits and signed, so "max long" is 2<sup>63</sup>-1

#### Therefore...

Could give a unique id to...

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?