CSE373: Data Structures \& Algorithms

Lecture 19: Dijkstra's algorithm and Spanning Trees

Catie Baker

Spring 2015

Announcements

- Homework 4 due tonight at 11 pm!!
- Homework 5 out tonight
- Due May $27^{\text {th }}$
- As with HW4 you're allowed to work with a partner

Dijkstra's algorithm

- Dijkstra's algorithm: Compute shortest paths in a weighted graph with no negative weights

- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
- Pick an unknown vertex v with the lowest "cost"
- Add it to the "cloud" of known vertices
- Update distances for nodes with edges from v

Correctness and Efficiency

- What should we do after learning an algorithm?
- Prove it is correct
- Not obvious!
- We will sketch the key ideas
- Analyze its efficiency
- Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:

All the "known" vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need: When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Correctness: The Cloud (Rough Sketch)

Suppose \mathbf{v} is the next node to be marked known ("added to the cloud")

- The best-known path to \mathbf{v} must have only nodes "in the cloud"
- Else we would have picked a node closer to the cloud than \mathbf{v}
- Suppose the actual shortest path to \mathbf{v} is different
- It won't use only cloud nodes, or we would know about it
- So it must use non-cloud nodes.
- Let \mathbf{w} be the first non-cloud node on this path.
- The part of the path up to \mathbf{w} is already known and must be shorter than the best-known path to \mathbf{v}. So \mathbf{v} would not have been picked.
- Contradiction.

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) \{
    for each node: x.cost=infinity, x.known=false]
    start.cost = 0
    while (not all nodes are known) \{
    \(\mathrm{b}=\) find unknown node with smallest cost
    b.known \(=\) true
    for each edge (b,a) in G
        if(!a.known)
            if (b.cost + weight((b,a)) < a.cost) \{
            a.cost \(=\mathrm{b} . \operatorname{cost}+\) weight( (b,a))
            a.path \(=\) b
        \}
```

\}

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once
dijkstra(Graph G, Node start) \{
for each node: x.cost=infinity, x.known=false
$\mathrm{O}(|\mathrm{V}|)$
start.cost = 0
while (not all nodes are known) \{
$\mathrm{b}=$ find unknown node with smallest cost
b.known $=$ true
for each edge (b, a) in G
if(!a.known)
if (b.cost + weight((b,a)) < a.cost) \{
a.cost $=$ b.cost + weight((b, a))
a.path $=$ b
\}
\}

Improving asymptotic running time

- So far: $O\left(|\mathrm{~V}|^{2}\right)$
- We had a similar "problem" with topological sort being $O\left(|\mathrm{~V}|^{2}\right)$ due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- Solution?
- A priority queue holding all unknown nodes, sorted by cost
- But must support decreaseKey operation
- Must maintain a reference from each node to its current position in the priority queue
- Conceptually simple, but can be a pain to code up

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) \{
for each node: x.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
while (heap is not empty) \{
    b = deleteMin()
    b.known \(=\) true
    for each edge (b,a) in G
        if(!a.known)
        if (b.cost + weight((b,a)) < a.cost) \{
        decreaseKey(a,"new cost - old cost")
            a.path = b
        \}
\}
```


Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false - O(|V|)
while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
    if(!a.known)
    if(b.cost + weight((b,a)) < a.cost) { L O(|E||og|V|)
                decreaseKey(a,"new cost - old cost")
                O(|V|log |V|)
                a.path = b
        }

\section*{Dense vs. sparse again}
- First approach: \(O\left(|\mathrm{~V}|^{2}\right)\)
- Second approach: \(O(|\mathrm{~V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)\)
- So which is better?
- Sparse: \(O(|\mathrm{~V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)\) (if \(|\mathrm{E}|>|\mathrm{V}|\), then \(O(|\mathrm{E}| \log |\mathrm{V}|)\) )
- Dense: \(O\left(|\mathrm{~V}|^{2}\right)\)
- But, remember these are worst-case and asymptotic
- Priority queue might have slightly worse constant factors
- On the other hand, for "normal graphs", we might call decreaseKey rarely (or not percolate far), making |E|log|V| more like |E|

\section*{Done with Dijkstra's}
- You will implement Dijkstra's algorithm in homework 5 ©
- Onward..... Spanning trees!

\section*{Spanning Trees}
- A simple problem: Given a connected undirected graph \(\mathbf{G}=(\mathbf{V}, \mathbf{E})\), find a minimal subset of edges such that \(\mathbf{G}\) is still connected
- A graph \(\mathbf{G} 2=(\mathbf{V}, \mathbf{E} 2)\) such that \(\mathbf{G} 2\) is connected and removing any edge from E2 makes G2 disconnected


\section*{Observations}
1. Any solution to this problem is a tree
- Recall a tree does not need a root; just means acyclic
- For any cycle, could remove an edge and still be connected
2. Solution not unique unless original graph was already a tree
3. Problem ill-defined if original graph not connected \(-\quad\) So \(|E| \geq|V|-1\)
4. A tree with \(|\mathbf{V}|\) nodes has \(|\mathbf{V}|-1\) edges
- So every solution to the spanning tree problem has \(|\mathbf{V}|-1\) edges

\section*{Motivation}

A spanning tree connects all the nodes with as few edges as possible
- Example: A "phone tree" so everybody gets the message and no unnecessary calls get made

In most compelling uses, we have a weighted undirected graph and we want a tree of least total cost
- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

This is the minimum spanning tree problem
- Will do that next, after intuition from the simpler case

\section*{Two Approaches}

Different algorithmic approaches to the spanning-tree problem:
1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree
2. Iterate through edges; add to output any edge that does not create a cycle

\section*{Spanning tree via DFS}
```

spanning_tree(Graph G) {
for each node i
i.marked = false
for some node i: f(i)
}
f(Node i) {
i.marked = true
for each j adjacent to i:
if(!j.marked) {
add(i,j) to output
f(j) // DFS
}
}

```

Correctness: DFS reaches each node. We add one edge to connect it to the already visited nodes. Order affects result, not correctness.

Time: \(O(|E|)\)

\section*{Example}

Stack
f(1)


\section*{Output:}

\section*{Example}

Stack
f(1)
f(2)


Output: \((1,2)\)

\section*{Example}


Output: \((1,2),(2,7)\)

\section*{Example}

Stack
f(1)
f(2)
f(7)
f(5)


Output: \((1,2),(2,7),(7,5)\)

\section*{Example}

Stack
f(1)
f(2)
f(7)
f(5)
f(4)


Output: \((1,2),(2,7),(7,5),(5,4)\)

\section*{Example}

Stack
f(1)
f(2)
f(7)
f(5)
f(4)
f(3)


Output: (1,2), (2,7), (7,5), (5,4),(4,3)

\section*{Example}


Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

\section*{Example}


Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

\section*{Second Approach}

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):
- Goal is to build an acyclic connected graph
- When we add an edge, it adds a vertex to the tree
- Else it would have created a cycle
- The graph is connected, so we reach all vertices

Efficiency:
- Depends on how quickly you can detect cycles
- Reconsider after the example

\section*{Example}

Edges in some arbitrary order:
\((1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)\)


Output:

\section*{Example}

Edges in some arbitrary order:
\((1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)\)


Output: \((1,2)\)

\section*{Example}

Edges in some arbitrary order:
\((1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)\)


Output: \((1,2),(3,4)\)

\section*{Example}

Edges in some arbitrary order:
\((1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)\)


Output: \((1,2),(3,4),(5,6)\),

\section*{Example}

Edges in some arbitrary order:
\((1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)\)


Output: \((1,2),(3,4),(5,6),(5,7)\)

\section*{Example}

Edges in some arbitrary order:


Output: (1,2), (3,4), (5,6), (5,7), (1,5)

\section*{Example}

Edges in some arbitrary order:
\((1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)\)


Output: (1,2), (3,4), (5,6), (5,7), (1,5)

\section*{Example}

Edges in some arbitrary order:
\((1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)\)


Output: (1,2), (3,4), (5,6), (5,7), (1,5)

\section*{Example}

Edges in some arbitrary order:
\((1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)\)


Can stop once we have \(|\mathbf{V}|-1\) edges

Output: \((1,2),(3,4),(5,6),(5,7),(1,5),(2,3)\)

\section*{Cycle Detection}
- To decide if an edge could form a cycle is \(O(|\mathbf{V}|)\) because we may need to traverse all edges already in the output
- So overall algorithm would be \(O(|\mathbf{V}||\mathrm{E}|)\)
- But there is a faster way we know
- Use union-find!
- Initially, each item is in its own 1-element set
- Union sets when we add an edge that connects them
- Stop when we have one set

\section*{Using Disjoint-Set}

Can use a disjoint-set implementation in our spanning-tree algorithm to detect cycles:

Invariant: \(\quad \mathbf{u}\) and v are connected in output-so-far
iff
\(u\) and \(v\) in the same set
- Initially, each node is in its own set
- When processing edge ( \(u, v\) ):
- If find(u) equals find(v), then do not add the edge
- Else add the edge and union (find (u), find (v))
- \(O(|E|)\) operations that are almost \(O(1)\) amortized

\section*{Summary So Far}

The spanning-tree problem
- Add nodes to partial tree approach is \(O(|E|)\)
- Add acyclic edges approach is almost \(O(|E|)\)
- Using union-find "as a black box"

But really want to solve the minimum-spanning-tree problem
- Given a weighted undirected graph, give a spanning tree of minimum weight
- Same two approaches will work with minor modifications
- Both will be \(O(|E| \log |\mathrm{V}|)\)

\section*{Minimum Spanning Tree Algorithms}

Algorithm \#1
Shortest-path is to Dijkstra's Algorithm
as
Minimum Spanning Tree is to Prim's Algorithm
(Both based on expanding cloud of known vertices, basically using a priority queue instead of a DFS stack)

Algorithm \#2
Kruskal's Algorithm for Minimum Spanning Tree is
Exactly our \(2^{\text {nd }}\) approach to spanning tree but process edges in cost order```

