CSE373: Data Structures \& Algorithms Lecture 17: Shortest Paths

Catie Baker
Spring 2015

Announcements

- Homework 4 due next Wednesday, May 13th

Graph Traversals

For an arbitrary graph and a starting node \mathbf{v}, find all nodes reachable from \mathbf{v} (i.e., there exists a path from \mathbf{v})

Basic idea:

- Keep following nodes
- But "mark" nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Important Graph traversal algorithms:

- "Depth-first search" "DFS": recursively explore one part before going back to the other parts not yet explored
- "Breadth-first search" "BFS": explore areas closer to the start node first

Example: Another Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to "see" DFS2 (Node start) \{
 initialize stack s and push start mark start as visited while(s is not empty) \{ next = s.pop() // and "process" for each node u adjacent to next if (u is not marked) mark u and push onto s
- ACFHGBED
- Could be other correct DFS traversals (e.g. go to right nodes first)
- The marking is because we support arbitrary graphs and we want to process each node exactly once

Example: Breadth First Search

- A tree is a graph and DFS and BFS are particularly easy to "see" BFS (Node start) \{

initialize queue q and enqueue start mark start as visited while(q is not empty) \{ next = q.dequeue() // and "process" for each node u adjacent to next if (u is not marked) mark u and enqueue onto q
- ABCDEFGH
- A "level-order" traversal

Comparison

- Breadth-first always finds shortest paths, i.e., "optimal solutions"
- Better for "what is the shortest path from \mathbf{x} to \mathbf{y} "
- But depth-first can use less space in finding a path
- If longest path in the graph is p and highest out-degree is d then DFS stack never has more than $\mathrm{d} *$ p elements
- But a queue for BFS may hold $O(|\mathrm{~V}|)$ nodes
- A third approach:
- Iterative deepening (IDFS):
- Try DFS but disallow recursion more than K levels deep
- If that fails, increment K and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.

Saving the Path

- Our graph traversals can answer the reachability question:
- "Is there a path from node x to node y ?"
- But what if we want to actually output the path?
- Like getting driving directions rather than just knowing it's possible to get there!
- How to do it:
- Instead of just "marking" a node, store the previous node along the path (when processing \mathbf{u} causes us to add \mathbf{v} to the search, set \mathbf{v}. path field to be \mathbf{u})
- When you reach the goal, follow path fields back to where you started (and then reverse the answer)
- If just wanted path length, could put the integer distance at each node instead

Example using BFS

What is a path from Seattle to Tyler

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

Single source shortest paths

- Done: BFS to find the minimum path length from \mathbf{v} to \mathbf{u} in $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$
- Actually, can find the minimum path length from \mathbf{v} to every node
- Still $O(|E|+|V|)$
- No faster way for a "distinguished" destination in the worst-case
- Now: Weighted graphs

Given a weighted graph and node v, find the minimum-cost path from v to every node

- As before, asymptotically no harder than for one destination

Applications

- Driving directions
- Cheap flight itineraries
- Network routing
- Critical paths in project management

Not as easy as BFS

Why BFS won't work: Shortest path may not have the fewest edges

- Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Today's algorithm is wrong if edges can be negative
- There are other, slower (but not terrible) algorithms

Dijkstra's Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
- Truly one of the "founders" of computer science; this is just one of his many contributions
- Many people have a favorite Dijkstra story, even if they never met him

Dijkstra's Algorithm

- The idea: reminiscent of BFS, but adapted to handle weights
- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a "best distance so far"
- A priority queue will turn out to be useful for efficiency
- An example of a greedy algorithm
- A series of steps
- At each one the locally optimal choice is made

Dijkstra's Algorithm: Idea

- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
- Pick closest unknown vertex \mathbf{v}
- Add it to the "cloud" of known vertices
- Update distances for nodes with edges from \mathbf{v}
- That's it! (But we need to prove it produces correct answers)

The Algorithm

1. For each node \mathbf{v}, set v.cost $=\infty$ and \mathbf{v}.known $=$ false
2. Set source.cost $=0$
3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known
c) For each edge (\mathbf{v}, u) with weight w , $\mathrm{c} 1=\mathrm{v} . \operatorname{cost}+\mathrm{w} / /$ cost of best path through v to u c2 = u.cost // cost of best path to u previously known if (c1 < c2) \{ // if the path through v is better
u.cost $=c 1$
u.path $=\mathrm{v} / /$ for computing actual paths
\}

Example \#1

Features

- When a vertex is marked known, the cost of the shortest path to that node is known
- The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Note: The "Order Added to Known Set" is not important

- A detail about how the algorithm works (client doesn't care)
- Not used by the algorithm (implementation doesn't care)
- It is sorted by path-cost, resolving ties in some way
- Helps give intuition of why the algorithm works

Interpreting the Results

- Now that we're done, how do we get the path from, say, A to E?

Order Added to Known Set:
A, C, B, D, F, H, G, E

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

Stopping Short

- How would this have worked differently if we were only interested in:
- The path from A to G ?
- The path from A to E ?

Order Added to Known Set:
A, C, B, D, F, H, G, E

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

Example \#2

Order Added to Known Set:

vertex	known?	cost	path
A		0	
B		$? ?$	
C		$? ?$	
D		$? ?$	
E		$? ?$	
F		$? ?$	
G		$? ?$	

Example \#2

Order Added to Known Set:
A, D, C, E, B

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F		≤ 4	C
G		≤ 6	D

Example \#2

Order Added to Known Set:
A, D, C, E, B, F

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G		≤ 6	D

Example \#2

A, D, C, E, B, F, G

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G	Y	6	D

Example \#3

How will the best-cost-so-far for Y proceed?
Is this expensive?

Example \#3

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ... Is this expensive?

Example \#3

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...
Is this expensive? No, each edge is processed only once

A Greedy Algorithm

- Dijkstra's algorithm
- For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- An example of a greedy algorithm:
- At each step, always does what seems best at that step
- A locally optimal step, not necessarily globally optimal
- Once a vertex is known, it is not revisited
- Turns out to be globally optimal

Where are We?

- Had a problem: Compute shortest paths in a weighted graph with no negative weights
- Learned an algorithm: Dijkstra's algorithm
- What should we do after learning an algorithm?
- Prove it is correct
- Not obvious!
- We will sketch the key ideas
- Analyze its efficiency
- Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:

All the "known" vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need: When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Correctness: The Cloud (Rough Sketch)

Suppose \mathbf{v} is the next node to be marked known ("added to the cloud")

- The best-known path to \mathbf{v} must have only nodes "in the cloud"
- Else we would have picked a node closer to the cloud than \mathbf{v}
- Suppose the actual shortest path to \mathbf{v} is different
- It won't use only cloud nodes, or we would know about it
- So it must use non-cloud nodes. Let w be the first non-cloud node on this path. The part of the path up to \mathbf{w} is already known and must be shorter than the best-known path to \mathbf{v}. So \mathbf{v} would not have been picked. Contradiction.

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) \{
    for each node: x.cost=infinity, x.known=false]
    start.cost = 0
    while (not all nodes are known) \{
    \(\mathrm{b}=\) find unknown node with smallest cost
    b.known \(=\) true
    for each edge (b,a) in G
        if(!a.known)
            if (b.cost + weight((b,a)) < a.cost) \{
            a.cost \(=\mathrm{b} . \operatorname{cost}+\) weight( (b,a))
            a.path \(=\) b
\}
```

\}

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
        if(!a.known)
    if(b.cost + weight((b,a)) < a.cost){
        a.cost = b.cost + weight((b,a))
                a.path = b
    }
```

\}

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false]
    start.cost = 0
    while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
        if(!a.known)
            if(b.cost + weight((b,a)) < a.cost) {
                a.cost = b.cost + weight((b,a))
                a.path = b
    }
```

\}

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) \{
    for each node: x.cost=infinity, x.known=false]
    start.cost = 0
    while (not all nodes are known) \{
    \(\mathrm{b}=\) find unknown node with smallest cost
    b.known \(=\) true
    for each edge (b,a) in G
        if(!a.known)
    if (b.cost + weight((b,a)) < a.cost) \{
        a.cost \(=\mathrm{b} . \operatorname{cost}+\) weight((b,a))
        a.path \(=\) b
    \}
```

\}

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

Improving asymptotic running time

- So far: $O\left(|\mathrm{~V}|^{2}\right)$
- We had a similar "problem" with topological sort being $O\left(|\mathrm{~V}|^{2}\right)$ due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- Solution?

Improving (?) asymptotic running time

- So far: $O\left(|V|^{2}\right)$
- We had a similar "problem" with topological sort being $O\left(|V|^{2}\right)$ due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- Solution?
- A priority queue holding all unknown nodes, sorted by cost
- But must support decreaseKey operation
- Must maintain a reference from each node to its current position in the priority queue
- Conceptually simple, but can be a pain to code up

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) \{
    for each node: \(\mathbf{x . c o s t = i n f i n i t y , ~ x . k n o w n = f a l s e ~}\)
start.cost \(=0\)
build-heap with all nodes
while(heap is not empty) \{
    b = deleteMin()
    b.known \(=\) true
    for each edge (b,a) in G
        if(!a.known)
            if (b.cost + weight((b,a)) < a.cost) \{
                decreaseKey (a,"new cost - old cost")
                a.path = b
            \}
\}
```


Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false _O (|V|)
while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
        if(!a.known)
            if(b.cost + weight((b,a)) < a.cost) {
                decreaseKey(a,"new cost - old cost")
                a.path = b
        }
```

\}

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false - O(|V|)
    while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
        if(!a.known)
            if(b.cost + weight((b,a)) < a.cost){
                decreaseKey(a,"new cost - old cost")
                a.path = b
            }
```

\}

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false - O(|V|)
    while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
        if(!a.known)
            if(b.cost + weight((b,a)) < a.cost) { LO(|E||og|V|)
                decreaseKey(a,"new cost - old cost")
                a.path = b
        }
```

\}

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false - O(|V|)
while(heap is not empty) {
    b = deleteMin()
    O(|V|log|V|)
    b.known = true
    for each edge (b,a) in G
        if(!a.known)
            if(b.cost + weight((b,a)) < a.cost) { O(|E|log|V|)
                decreaseKey(a,"new cost - old cost")
                a.path = b
        }

\section*{Dense vs. sparse again}
- First approach: \(O\left(|\mathrm{~V}|^{2}\right)\)
- Second approach: \(O(|\mathrm{~V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)\)
- So which is better?
- Sparse: \(O(|\mathrm{~V}| \log |\mathrm{V}|+|E| \log |\mathrm{V}|)\) (if \(|\mathrm{E}|>|\mathrm{V}|\), then \(O(|\mathrm{E}| \log |\mathrm{V}|)\) )
- Dense: \(O\left(|V|^{2}\right)\)
- But, remember these are worst-case and asymptotic
- Priority queue might have slightly worse constant factors
- On the other hand, for "normal graphs", we might call decreaseKey rarely (or not percolate far), making |E|log|V| more like |E|

\section*{Spanning Trees}
- A simple problem: Given a connected undirected graph \(\mathbf{G}=(\mathbf{V}, \mathbf{E})\), find a minimal subset of edges such that \(\mathbf{G}\) is still connected
- A graph \(\mathbf{G 2}=(\mathbf{V}, \mathbf{E} 2)\) such that \(\mathbf{G 2}\) is connected and removing any edge from E2 makes \(\mathbf{G} 2\) disconnected


\section*{Observations}
1. Any solution to this problem is a tree
- Recall a tree does not need a root; just means acyclic
- For any cycle, could remove an edge and still be connected
2. Solution not unique unless original graph was already a tree
3. Problem ill-defined if original graph not connected - So |E| \(\geq|\mathrm{V}|-1\)
4. A tree with \(|\mathbf{V}|\) nodes has \(|\mathbf{V}|-1\) edges
- So every solution to the spanning tree problem has |V|-1 edges

\section*{Motivation}

A spanning tree connects all the nodes with as few edges as possible
- Example: A "phone tree" so everybody gets the message and no unnecessary calls get made
- Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted undirected graph and we want a tree of least total cost
- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

This is the minimum spanning tree problem
- Will do that next, after intuition from the simpler case

\section*{Two Approaches}

Different algorithmic approaches to the spanning-tree problem:
1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree
2. Iterate through edges; add to output any edge that does not create a cycle```

