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Announcements

• Homework 4 due next Wednesday, May 13th
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Graph Traversals

For an arbitrary graph and a starting node v, find all nodes reachable

from v (i.e., there exists a path from v)

Basic idea: 

– Keep following nodes

– But “mark” nodes after visiting them, so the traversal terminates 

and processes each reachable node exactly once

Important Graph traversal algorithms:

• “Depth-first search”  “DFS”: recursively explore one part before 

going back to the other parts not yet explored

• “Breadth-first search” “BFS”: explore areas closer to the start node 

first
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Example: Another Depth First Search

• A tree is a graph and DFS and BFS are particularly easy to “see” 
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DFS2(Node start) {

initialize stack s and push start

mark start as visited

while(s is not empty) {

next = s.pop() // and “process”

for each node u adjacent to next

if(u is not marked)

mark u and push onto s

}

}
•

• Could be other correct DFS traversals (e.g. go to right nodes first)

• The marking is because we support arbitrary graphs and we want to 

process each node exactly once
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Example: Breadth First Search

• A tree is a graph and DFS and BFS are particularly easy to “see” 
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BFS(Node start) {

initialize queue q and enqueue start

mark start as visited

while(q is not empty) {

next = q.dequeue() // and “process”

for each node u adjacent to next

if(u is not marked)

mark u and enqueue onto q

}

}

•

• A “level-order” traversal
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Comparison

• Breadth-first always finds shortest paths, i.e., “optimal solutions”

– Better for “what is the shortest path from x to y”

• But depth-first can use less space in finding a path

– If longest path in the graph is p and highest out-degree is d

then DFS stack never has more than d*p elements

– But a queue for BFS may hold O(|V|) nodes

• A third approach:

– Iterative deepening (IDFS): 

• Try DFS but disallow recursion more than K levels deep

• If that fails, increment K and start the entire search over

– Like BFS, finds shortest paths.  Like DFS, less space.
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Saving the Path

• Our graph traversals can answer the reachability question:

– “Is there a path from node x to node y?”

• But what if we want to actually output the path?

– Like getting driving directions rather than just knowing it’s 

possible to get there!

• How to do it: 

– Instead of just “marking” a node, store the previous node 

along the path (when processing u causes us to add v to the 
search, set v.path field to be u)

– When you reach the goal, follow path fields back to where 

you started (and then reverse the answer)

– If just wanted path length, could put the integer distance at 

each node instead
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Example using BFS
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Seattle

San Francisco

Dallas

Salt Lake City

What is a path from Seattle to Tyler

– Remember marked nodes are not re-enqueued

– Note shortest paths may not be unique
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Single source shortest paths

• Done: BFS to find the minimum path length from v to u in O(|E|+|V|)

• Actually, can find the minimum path length from v to every node

– Still O(|E|+|V|)

– No faster way for a “distinguished” destination in the worst-case

• Now:  Weighted graphs 

Given a weighted graph and node v, 

find the minimum-cost path from v to every node 

• As before, asymptotically no harder than for one destination
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Applications

• Driving directions

• Cheap flight itineraries

• Network routing

• Critical paths in project management
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Not as easy as BFS

Why BFS won’t work: Shortest path may not have the fewest edges

– Annoying when this happens with costs of flights
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We will assume there are no negative weights

• Problem is ill-defined if there are negative-cost cycles

• Today’s algorithm is wrong if edges can be negative

– There are other, slower (but not terrible) algorithms
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Dijkstra’s Algorithm

• Named after its inventor Edsger Dijkstra (1930-2002)

– Truly one of the “founders” of computer science;                

this is just one of his many contributions

– Many people have a favorite Dijkstra story, even if they 

never met him
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Dijkstra’s Algorithm

• The idea: reminiscent of BFS, but adapted to handle weights

– Grow the set of nodes whose shortest distance has been 

computed

– Nodes not in the set will have a “best distance so far”

– A priority queue will turn out to be useful for efficiency

• An example of a greedy algorithm

– A series of steps

– At each one the locally optimal choice is made
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Dijkstra’s Algorithm: Idea
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• Initially, start node has cost 0 and all other nodes have cost 

• At each step:

– Pick closest unknown vertex v

– Add it to the “cloud” of known vertices

– Update distances for nodes with edges from v

• That’s it!  (But we need to prove it produces correct answers)
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The Algorithm

1. For each node v, set  v.cost =  and v.known = false

2. Set source.cost = 0

3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost

b) Mark v as known

c) For each edge (v,u) with weight w,

c1 = v.cost + w // cost of best path through v to u

c2 = u.cost // cost of best path to u previously known

if(c1 < c2){ // if the path through v is better

u.cost = c1

u.path = v // for computing actual paths

}
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Example #1
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Example #1
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Features

• When a vertex is marked known, 

the cost of the shortest path to that node is known

– The path is also known by following back-pointers

• While a vertex is still not known, 

another shorter path to it might still be found

Note: The “Order Added to Known Set” is not important

– A detail about how the algorithm works (client doesn’t care)

– Not used by the algorithm (implementation doesn’t care)

– It is sorted by path-cost, resolving ties in some way

• Helps give intuition of why the algorithm works
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Interpreting the Results

• Now that we’re done, how do we get the path from, say, A to E?
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Stopping Short

• How would this have worked differently if we were only interested in:

– The path from A to G?

– The path from A to E?
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Example #2
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Is this expensive?
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X
1 1 1 1

90
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How will the best-cost-so-far for Y proceed?  90, 81, 72, 63, 54, …

Is this expensive?  

…



Example #3
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Y

X
1 1 1 1

90
80 70 60 50

How will the best-cost-so-far for Y proceed?  90, 81, 72, 63, 54, …

Is this expensive?  No, each edge is processed only once

…



A Greedy Algorithm

• Dijkstra’s algorithm

– For single-source shortest paths in a weighted graph (directed 

or undirected) with no negative-weight edges

• An example of a greedy algorithm: 

– At each step, always does what seems best at that step

• A locally optimal step, not necessarily globally optimal

– Once a vertex is known, it is not revisited

• Turns out to be globally optimal
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Where are We?

• Had a problem: Compute shortest paths in a weighted graph with 

no negative weights

• Learned an algorithm: Dijkstra’s algorithm

• What should we do after learning an algorithm?

– Prove it is correct

• Not obvious!

• We will sketch the key ideas

– Analyze its efficiency

• Will do better by using a data structure we learned earlier!
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Correctness: Intuition

Rough intuition: 

All the “known” vertices have the correct shortest path

– True initially: shortest path to start node has cost 0

– If it stays true every time we mark a node “known”, then by 

induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t 

discover a shorter path later!

– This holds only because Dijkstra’s algorithm picks the node 

with the next shortest path-so-far

– The proof is by contradiction…
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Correctness: The Cloud (Rough Sketch)
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The Known 
Cloud

v Next shortest path from 

inside the known cloud

w

Better path to 

v?  No!

Source

Suppose v is the next node to be marked known (“added to the cloud”)

• The best-known path to v must have only nodes “in the cloud”

– Else we would have picked a node closer to the cloud than v

• Suppose the actual shortest path to v is different

– It won’t use only cloud nodes, or we would know about it

– So it must use non-cloud nodes.  Let w be the first non-cloud node 

on this path.  The part of the path up to w is already known and 

must be shorter than the best-known path to v.  So v would not 

have been picked.  Contradiction.



Efficiency, first approach

Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once
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dijkstra(Graph G, Node start) {

for each node: x.cost=infinity, x.known=false

start.cost = 0

while(not all nodes are known) {

b = find unknown node with smallest cost

b.known = true

for each edge (b,a) in G

if(!a.known)

if(b.cost + weight((b,a)) < a.cost){

a.cost = b.cost + weight((b,a))

a.path = b

}

}



Efficiency, first approach

Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once
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dijkstra(Graph G, Node start) {

for each node: x.cost=infinity, x.known=false

start.cost = 0

while(not all nodes are known) {

b = find unknown node with smallest cost

b.known = true

for each edge (b,a) in G

if(!a.known)

if(b.cost + weight((b,a)) < a.cost){

a.cost = b.cost + weight((b,a))

a.path = b

}

}

O(|V|)



Efficiency, first approach

Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once
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dijkstra(Graph G, Node start) {

for each node: x.cost=infinity, x.known=false

start.cost = 0

while(not all nodes are known) {

b = find unknown node with smallest cost

b.known = true

for each edge (b,a) in G

if(!a.known)

if(b.cost + weight((b,a)) < a.cost){

a.cost = b.cost + weight((b,a))

a.path = b

}

}

O(|V|)

O(|V|2)



Efficiency, first approach

Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once
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dijkstra(Graph G, Node start) {

for each node: x.cost=infinity, x.known=false

start.cost = 0

while(not all nodes are known) {

b = find unknown node with smallest cost

b.known = true

for each edge (b,a) in G

if(!a.known)

if(b.cost + weight((b,a)) < a.cost){

a.cost = b.cost + weight((b,a))

a.path = b

}

}

O(|V|)

O(|V|2)

O(|E|)



Efficiency, first approach

Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once
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dijkstra(Graph G, Node start) {

for each node: x.cost=infinity, x.known=false

start.cost = 0

while(not all nodes are known) {

b = find unknown node with smallest cost

b.known = true

for each edge (b,a) in G

if(!a.known)

if(b.cost + weight((b,a)) < a.cost){

a.cost = b.cost + weight((b,a))

a.path = b

}

}

O(|V|)

O(|V|2)

O(|E|)

O(|V|2)



Improving asymptotic running time

• So far: O(|V|2)

• We had a similar “problem” with topological sort being O(|V|2) 

due to each iteration looking for the node to process next

– We solved it with a queue of zero-degree nodes

– But here we need the lowest-cost node and costs can 

change as we process edges

• Solution?
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Improving (?) asymptotic running time

• So far: O(|V|2)

• We had a similar “problem” with topological sort being O(|V|2) 

due to each iteration looking for the node to process next

– We solved it with a queue of zero-degree nodes

– But here we need the lowest-cost node and costs can 

change as we process edges

• Solution?

– A priority queue holding all unknown nodes, sorted by cost

– But must support decreaseKey operation

• Must maintain a reference from each node to its current 

position in the priority queue

• Conceptually simple, but can be a pain to code up
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Efficiency, second approach

Use pseudocode to determine asymptotic run-time
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dijkstra(Graph G, Node start) {

for each node: x.cost=infinity, x.known=false

start.cost = 0

build-heap with all nodes

while(heap is not empty) {

b = deleteMin()

b.known = true

for each edge (b,a) in G

if(!a.known)

if(b.cost + weight((b,a)) < a.cost){

decreaseKey(a,“new cost – old cost”)

a.path = b

}

}



Efficiency, second approach

Use pseudocode to determine asymptotic run-time
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dijkstra(Graph G, Node start) {

for each node: x.cost=infinity, x.known=false

start.cost = 0

build-heap with all nodes

while(heap is not empty) {

b = deleteMin()

b.known = true

for each edge (b,a) in G

if(!a.known)

if(b.cost + weight((b,a)) < a.cost){

decreaseKey(a,“new cost – old cost”)

a.path = b

}

}

O(|V|)



Efficiency, second approach

Use pseudocode to determine asymptotic run-time
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dijkstra(Graph G, Node start) {

for each node: x.cost=infinity, x.known=false

start.cost = 0

build-heap with all nodes

while(heap is not empty) {

b = deleteMin()

b.known = true

for each edge (b,a) in G

if(!a.known)

if(b.cost + weight((b,a)) < a.cost){

decreaseKey(a,“new cost – old cost”)

a.path = b

}

}

O(|V|)

O(|V|log|V|)



Efficiency, second approach

Use pseudocode to determine asymptotic run-time
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dijkstra(Graph G, Node start) {

for each node: x.cost=infinity, x.known=false

start.cost = 0

build-heap with all nodes

while(heap is not empty) {

b = deleteMin()

b.known = true

for each edge (b,a) in G

if(!a.known)

if(b.cost + weight((b,a)) < a.cost){

decreaseKey(a,“new cost – old cost”)

a.path = b

}

}

O(|V|)

O(|V|log|V|)

O(|E|log|V|)



Efficiency, second approach

Use pseudocode to determine asymptotic run-time
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dijkstra(Graph G, Node start) {

for each node: x.cost=infinity, x.known=false

start.cost = 0

build-heap with all nodes

while(heap is not empty) {

b = deleteMin()

b.known = true

for each edge (b,a) in G

if(!a.known)

if(b.cost + weight((b,a)) < a.cost){

decreaseKey(a,“new cost – old cost”)

a.path = b

}

}

O(|V|)

O(|V|log|V|)

O(|E|log|V|)

O(|V|log|V|+|E|log|V|)



Dense vs. sparse again

• First approach: O(|V|2)

• Second approach: O(|V|log|V|+|E|log|V|)

• So which is better?

– Sparse: O(|V|log|V|+|E|log|V|) (if |E| > |V|, then O(|E|log|V|))

– Dense: O(|V|2)

• But, remember these are worst-case and asymptotic

– Priority queue might have slightly worse constant factors

– On the other hand, for “normal graphs”, we might call 
decreaseKey rarely (or not percolate far), making |E|log|V| 

more like |E|
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Spanning Trees

• A simple problem: Given a connected undirected graph G=(V,E), 

find a minimal subset of edges such that G is still connected

– A graph G2=(V,E2) such that G2 is connected and removing 

any edge from E2 makes G2 disconnected
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Observations

1. Any solution to this problem is a tree

– Recall a tree does not need a root; just means acyclic

– For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree

3. Problem ill-defined if original graph not connected

– So |E| ≥ |V|-1

4. A tree with |V| nodes has |V|-1 edges

– So every solution to the spanning tree problem has |V|-1

edges
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Motivation

A spanning tree connects all the nodes with as few edges as possible

• Example: A “phone tree” so everybody gets the message and no 

unnecessary calls get made

– Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted undirected graph and 

we want a tree of least total cost 

• Example: Electrical wiring for a house or clock wires on a chip

• Example: A road network if you cared about asphalt cost rather 

than travel time

This is the minimum spanning tree problem

– Will do that next, after intuition from the simpler case
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Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal 

will do), keeping track of edges that form a tree

2. Iterate through edges; add to output any edge that does not 

create a cycle

Spring 2015 59CSE373: Data Structures & Algorithms


