CSE373: Data Structures \& Algorithms Lecture 10: Disjoint Sets and the Union-Find ADT

Lauren Milne
Spring 2015

Announcements

- Start homework 3 soon.....
- Priority queues and binary heaps
- TA Sessions on Tuesday and Thursday
- Office hours for Conrad or Catie covered by other Tas this week.

Where we are

Last lecture:

- Priority queues and binary heaps

Today:

- Disjoint sets
- The union-find ADT for disjoint sets

Next lecture:

- Basic implementation of the union-find ADT with "up trees"
- Optimizations that make the implementation much faster

Disjoint sets

- A set is a collection of elements (no-repeats)
- Two sets are said to be disjoint if they have no element in common.
- $S_{1} \cap S_{2}=\varnothing$
- For example, $\{1,2,3\}$ and $\{4,5,6\}$ are disjoint sets.
- For example, $\{x, y, z\}$ and $\{t, u, x\}$ are not disjoint.

Partitions

A partition P of a set S is a set of sets $\{S 1, S 2, \ldots, S n\}$ such that every element of S is in exactly one Si

Put another way:
$-S_{1} \cup S_{2} \cup \ldots \cup S_{k}=S$
$-\mathrm{i} \neq \mathrm{j}$ implies $\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing$ (sets are disjoint with each other)
Example:

- Let S be $\{a, b, c, d, e\}$
- One partition: \{a\}, \{d,e\}, \{b,c\}
- Another partition: \{a,b,c\}, \{d\}, \{e\}
- A third: $\{a, b, c, d, e\}$
- Not a partition: \{a,b,d\}, \{c,d,e\} element d appears twice
- Not a partition: \{a,b\}, \{e,c\} missing element d

Binary relations

- A binary relation R is defined on a set S if for every pair of elements (x, y) in the set, $R(x, y)$ is either true or false. If $R(x, y)$ is true, we say x is related to y.
- i.e. a collection of ordered pairs of elements of S
- (Unary, ternary, quaternary, ... relations defined similarly)
- Examples for $S=$ people-in-this-room
- Sitting-next-to-each-other relation
- First-sitting-right-of-second relation
- Went-to-same-high-school relation

Properties of binary relations

- A relation R over set S is:
- reflexive, if $R(\mathrm{a}, \mathrm{a})$ holds for all a in S
- e.g. The relation " $<=$ " on the set of integers $\{1,2,3\}$ is $\{<1,1>,<1,2>,<1$, $3>,<2,2>,<2,3>,<3,3>\}$
It is reflexive because $<1,1>,<2,2>,<3,3>$ are in this relation.
- symmetric if and only if for any a and b in S, whenever $<a, b>$ is in R, $<b, a>$ is in R.
- e.g. The relation "=" on the set of integers $\{1,2,3\}$ is $\{<1,1>,<2,2><3,3>\}$ and it is symmetric.
- transitive if $R(\mathrm{a}, \mathrm{b})$ and $R(\mathrm{~b}, \mathrm{c})$ then $R(\mathrm{a}, \mathrm{c})$ for $\mathrm{all} \mathrm{a}, \mathrm{b}, \mathrm{c}$ in S
- e.g. The relation " $<=$ " on the set of integers $\{1,2,3\}$ is transitive, because for $<1,2>$ and $<2,3>$ in " $<=$ ", $<1,3>$ is also in " $<=$ " (and similarly for the others)

Equivalence relations

- A binary relation R is an equivalence relation if R is reflexive, symmetric, and transitive
- Examples
- Same gender
- Electrical connectivity, where connections are metal wires
- "Has the same birthday as" on the set of all people

Punch-line

- Equivalence relations give rise to partitions.
- Every partition induces an equivalence relation
- Every equivalence relation induces a partition
- Suppose $P=\{S 1, S 2, \ldots, S n\}$ is a partition
- Define $R(\mathrm{x}, \mathrm{y})$ to mean x and y are in the same Si
- R is an equivalence relation
- Suppose R is an equivalence relation over S
- Consider a set of sets $\mathrm{S} 1, \mathrm{~S} 2, \ldots, \mathrm{Sn}$ where
(1) x and y are in the same $S i$ if and only if $R(x, y)$
(2) Every x is in some Si
- This set of sets is a partition

Example

- Let S be $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$
- One partition: $\{a, b, c\},\{d\},\{e\}$
- The corresponding equivalence relation:

$$
(a, a),(b, b),(c, c),(a, b),(b, a),(a, c),(c, a),(b, c),(c, b),(d, d),(e, e)
$$

Example

- Let S be $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$
- The equivalence relation: (a,a),(a,b),(b,a), (b,b), (c,c), (d,d), (e,e)
- The corresponding partition?
\{a,b\},\{c\},\{d\},\{e\}

The Union-Find ADT

- The union-find ADT (or "Disjoint Sets" or "Dynamic Equivalence Relation") keeps track of a set of elements partitioned into a number of disjoint subsets.
- Many uses!
- Road/network/graph connectivity (will see this again)
- keep track of "connected components" e.g., in social network
- Partition an image by connected-pixels-of-similar-color
- Not as common as dictionaries, queues, and stacks, but valuable because implementations are very fast, so when applicable can provide big improvements

Union-Find Operations

- Given an unchanging set S, create an initial partition of a set
- Typically each item in its own subset: $\{a\},\{b\},\{c\}, \ldots$
- Give each subset a "name" by choosing a representative element
- Operation find takes an element of S and returns the representative element of the subset it is in
- Operation union takes two subsets and (permanently) makes one larger subset
- A different partition with one fewer set
- Affects result of subsequent find operations
- Choice of representative element up to implementation

Example

- Let $S=\{1,2,3,4,5,6,7,8,9\}$
- Let initial partition be (will highlight representative elements red)
$\{1\},\{2\},\{3\},\{4\},\{5\},\{6\},\{7\},\{8\},\{9\}$
- union(2,5):
$\{1\},\{2,5\},\{3\},\{4\},\{6\},\{7\},\{8\},\{9\}$
- $\operatorname{find}(4)=4$, find(2) $=2$, find(5) $=2$
- union(4,6), union(2,7)
$\{1\},\{\underline{2}, 5,7\},\{3\},\{4, \underline{6}\},\{\underline{8}\},\{\underline{9}\}$
- $\operatorname{find}(4)=6, \operatorname{find}(2)=2, \operatorname{find}(5)=2$
- union(2,6)

$$
\{1\},\{\underline{2}, 4,5,6,7\},\{\underline{3}\},\{\underline{8}\},\{\underline{9}\}
$$

No other operations

- All that can "happen" is sets get unioned
- No "un-union" or "create new set" or ...
- As always: trade-offs
- Implementations will exploit this small ADT
- Surprisingly useful ADT
- But not as common as dictionaries or priority queues

Example application: maze-building

- Build a random maze by erasing edges

- Possible to get from anywhere to anywhere
- Including "start" to "finish"
- No loops possible without backtracking
- After a "bad turn" have to "undo"

Maze building

Pick start edge and end edge

Repeatedly pick random edges to delete

One approach: just keep deleting random edges until you can get from start to finish

Problems with this approach

1. How can you tell when there is a path from start to finish?

- We do not really have an algorithm yet

2. We could have cycles, which a "good" maze avoids

- Want one solution and no cycles

Revised approach

- Consider edges in random order (i.e. pick an edge)
- Only delete an edge if it introduces no cycles (how? TBD)
- When done, we will have a way to get from any place to any other place (including from start to end points)

Cells and edges

- Let's number each cell
- 36 total for 6×6
- An (internal) edge (x, y) is the line between cells x and y
- 60 total for $6 x 6$: $(1,2),(2,3), \ldots,(1,7),(2,8), \ldots$

The trick

- Partition the cells into disjoint sets
- Two cells in same set if they are "connected"
- Initially every cell is in its own subset
- If removing an edge would connect two different subsets:
- then remove the edge and union the subsets
- else leave the edge because removing it makes a cycle

Start	1	2	3	4	5	6
	7	8	9	10	11	12
	13	14	15	16	17	18
	19	20	21	22	23	24
	25	26	27	28	29	30
	31	32	33	34	35	36

The algorithm

- $P=$ disjoint sets of connected cells initially each cell in its own 1-element set
- $\mathrm{E}=$ set of edges not yet processed, initially all (internal) edges
- $M=$ set of edges kept in maze (initially empty)
while P has more than one set $\{$
- Pick a random edge (x, y) to remove from E
- $u=$ find (x)
- $v=$ find(y)
- if $u==v$
add (x, y) to $\mathrm{M} / /$ same subset, leave edge in maze, do not create cycle else
union(u,v) // connect subsets, remove edge from maze
\}
Add remaining members of E to M , then output M as the maze

Example

Pick edge $(8,14)$

Start | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 8 | 9 | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 | 17 | 18 |
| 19 | 20 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 |

Example

P
\{31\}

$\{22,23,24,29,30,32,33,34,35,36\}$

Example: Add edge to M step

Pick edge $(19,20)$
Find (19) $=7$
Find (20) $=7$
Add $(19,20)$ to M
P

At the end of while loop

- Stop when P has one set (i.e. all cells connected)
- Suppose green edges are already in M and black edges were not yet picked
- Add all black edges to M

							$\begin{aligned} & P \\ & \{1,2,3,4,5,6, \underline{7}, \ldots 36\} \end{aligned}$
Start 1	2	3	4	5	6		
7	8	9	10	11	12		
13	14	15	16	17	18		
19	20	21	22	23	2		
25	26	27	28	29	30		
31	32	33	34	35	36	End	Done! ©

A data structure for the union-find ADT

- Start with an initial partition of n subsets
- Often 1-element sets, e.g., $\{1\},\{2\},\{3\}, \ldots,\{n\}$
- May have any number of find operations
- May have up to $n-1$ union operations in any order
- After n-1 union operations, every find returns same 1 set

Teaser: the up-tree data structure

- Tree structure with:
- No limit on branching factor
- References from children to parent
- Start with forest of 1 -node trees

- Possible forest after several unions:
- Will use roots for set names

