
CSE373: Data Structures & Algorithms

Lecture 10: Disjoint Sets and the

Union-Find ADT

Lauren Milne

Spring 2015

Announcements

• Start homework 3 soon…..

– Priority queues and binary heaps

– TA Sessions on Tuesday and Thursday

– Office hours for Conrad or Catie covered by other Tas this

week.

Spring 2015 2CSE373: Data Structures & Algorithms

Where we are

Last lecture:

• Priority queues and binary heaps

Today:

• Disjoint sets

• The union-find ADT for disjoint sets

Next lecture:

• Basic implementation of the union-find ADT with “up trees”

• Optimizations that make the implementation much faster

Spring 2015 3CSE373: Data Structures & Algorithms

Disjoint sets

• A set is a collection of elements (no-repeats)

• Two sets are said to be disjoint if they have no element in

common.

• S1 S2 =

• For example, {1, 2, 3} and {4, 5, 6} are disjoint sets.

• For example, {x, y, z} and {t, u, x} are not disjoint.

Spring 2015 4CSE373: Data Structures & Algorithms

Partitions

A partition P of a set S is a set of sets {S1,S2,…,Sn} such that

every element of S is in exactly one Si

Put another way:

– S1 S2 . . . Sk = S

– i j implies Si Sj = (sets are disjoint with each other)

Example:

– Let S be {a,b,c,d,e}

– One partition: {a}, {d,e}, {b,c}

– Another partition: {a,b,c}, {d}, {e}

– A third: {a,b,c,d,e}

– Not a partition: {a,b,d}, {c,d,e} …. element d appears twice

– Not a partition: {a,b}, {e,c} …. missing element d

Spring 2015 5CSE373: Data Structures & Algorithms

Binary relations

• A binary relation R is defined on a set S if for every pair of

elements (x,y) in the set, R(x,y) is either true or false. If R(x,y) is

true, we say x is related to y.

– i.e. a collection of ordered pairs of elements of S

– (Unary, ternary, quaternary, … relations defined similarly)

• Examples for S = people-in-this-room

– Sitting-next-to-each-other relation

– First-sitting-right-of-second relation

– Went-to-same-high-school relation

Spring 2015 6CSE373: Data Structures & Algorithms

Properties of binary relations

• A relation R over set S is:

– reflexive, if R(a,a) holds for all a in S

• e.g. The relation “<=“ on the set of integers {1, 2, 3} is {<1, 1>, <1, 2>, <1,

3>, <2, 2>, <2, 3>, <3, 3>}

It is reflexive because <1, 1>, <2, 2>, <3, 3> are in this relation.

– symmetric if and only if for any a and b in S, whenever <a, b> is in R ,

<b, a> is in R.

• e.g. The relation “=“ on the set of integers {1, 2, 3} is

{<1, 1> , <2, 2> <3, 3> } and it is symmetric.

– transitive if R(a,b) and R(b,c) then R(a,c) for all a,b,c in S

• e.g. The relation “<=“ on the set of integers {1, 2, 3} is transitive, because

for <1, 2> and <2, 3> in “<=“, <1, 3> is also in “<=“ (and similarly for the

others)

Spring 2015 7CSE373: Data Structures & Algorithms

Equivalence relations

• A binary relation R is an equivalence relation if R is

reflexive, symmetric, and transitive

• Examples

– Same gender

– Electrical connectivity, where connections are metal wires

– "Has the same birthday as" on the set of all people

– …

Spring 2015 8CSE373: Data Structures & Algorithms

Punch-line

• Equivalence relations give rise to partitions.

• Every partition induces an equivalence relation

• Every equivalence relation induces a partition

• Suppose P={S1,S2,…,Sn} is a partition

– Define R(x,y) to mean x and y are in the same Si

• R is an equivalence relation

• Suppose R is an equivalence relation over S

– Consider a set of sets S1,S2,…,Sn where

(1) x and y are in the same Si if and only if R(x,y)

(2) Every x is in some Si

• This set of sets is a partition

Spring 2015 9CSE373: Data Structures & Algorithms

Example

• Let S be {a,b,c,d,e}

• One partition: {a,b,c}, {d}, {e}

• The corresponding equivalence relation:

(a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a), (b,c), (c,b), (d,d), (e,e)

Spring 2015 10CSE373: Data Structures & Algorithms

Example

• Let S be {a, b, c, d, e}

• The equivalence relation: (a,a),(a,b),(b,a), (b,b), (c,c), (d,d),

(e,e)

• The corresponding partition?

{a,b},{c},{d},{e}

Spring 2015 11CSE373: Data Structures & Algorithms

The Union-Find ADT

• The union-find ADT (or "Disjoint Sets" or "Dynamic Equivalence

Relation") keeps track of a set of elements partitioned into a

number of disjoint subsets.

• Many uses!

– Road/network/graph connectivity (will see this again)

• keep track of “connected components” e.g., in social network

– Partition an image by connected-pixels-of-similar-color

• Not as common as dictionaries, queues, and stacks, but valuable

because implementations are very fast, so when applicable can

provide big improvements

Spring 2015 12CSE373: Data Structures & Algorithms

Union-Find Operations

• Given an unchanging set S, create an initial partition of a set

– Typically each item in its own subset: {a}, {b}, {c}, …

– Give each subset a “name” by choosing a representative

element

• Operation find takes an element of S and returns the

representative element of the subset it is in

• Operation union takes two subsets and (permanently) makes

one larger subset

– A different partition with one fewer set

– Affects result of subsequent find operations

– Choice of representative element up to implementation

Spring 2015 13CSE373: Data Structures & Algorithms

Example

• Let S = {1,2,3,4,5,6,7,8,9}

• Let initial partition be (will highlight representative elements red)

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}

• union(2,5):

{1}, {2, 5}, {3}, {4}, {6}, {7}, {8}, {9}

• find(4) = 4, find(2) = 2, find(5) = 2

• union(4,6), union(2,7)

{1}, {2, 5, 7}, {3}, {4, 6}, {8}, {9}

• find(4) = 6, find(2) = 2, find(5) = 2

• union(2,6)

{1}, {2, 4, 5, 6, 7}, {3}, {8}, {9}

Spring 2015 14CSE373: Data Structures & Algorithms

No other operations

• All that can “happen” is sets get unioned

– No “un-union” or “create new set” or …

• As always: trade-offs

– Implementations will exploit this small ADT

• Surprisingly useful ADT

– But not as common as dictionaries or priority queues

Spring 2015 15CSE373: Data Structures & Algorithms

Example application: maze-building

• Build a random maze by erasing edges

– Possible to get from anywhere to anywhere

• Including “start” to “finish”

– No loops possible without backtracking

• After a “bad turn” have to “undo”

Spring 2015 16CSE373: Data Structures & Algorithms

Maze building

Pick start edge and end edge

Spring 2015 17CSE373: Data Structures & Algorithms

Start

End

Repeatedly pick random edges to delete

One approach: just keep deleting random edges until you can get

from start to finish

Spring 2015 18CSE373: Data Structures & Algorithms

Start

End

Problems with this approach

1. How can you tell when there is a path from start to finish?

– We do not really have an algorithm yet

2. We could have cycles, which a “good” maze avoids

– Want one solution and no cycles

Spring 2015 19CSE373: Data Structures & Algorithms

Start

End

Revised approach

• Consider edges in random order (i.e. pick an edge)

• Only delete an edge if it introduces no cycles (how? TBD)

• When done, we will have a way to get from any place to any

other place (including from start to end points)

Spring 2015 20CSE373: Data Structures & Algorithms

Start

End

Cells and edges

• Let’s number each cell

– 36 total for 6 x 6

• An (internal) edge (x,y) is the line between cells x and y

– 60 total for 6x6: (1,2), (2,3), …, (1,7), (2,8), …

Spring 2015 21CSE373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

The trick

• Partition the cells into disjoint sets

– Two cells in same set if they are “connected”

– Initially every cell is in its own subset

• If removing an edge would connect two different subsets:

– then remove the edge and union the subsets

– else leave the edge because removing it makes a cycle

Spring 2015 22CSE373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

The algorithm

• P = disjoint sets of connected cells

initially each cell in its own 1-element set

• E = set of edges not yet processed, initially all (internal) edges

• M = set of edges kept in maze (initially empty)

while P has more than one set {

– Pick a random edge (x,y) to remove from E

– u = find(x)

– v = find(y)

– if u==v

add (x,y) to M // same subset, leave edge in maze, do not create cycle

else

union(u,v) // connect subsets, remove edge from maze

}

Add remaining members of E to M, then output M as the maze

Spring 2015 23CSE373: Data Structures & Algorithms

Example

Spring 2015 24CSE373: Data Structures & Algorithms

Pick edge (8,14)

P

{1,2,7,8,9,13,19}

{3}

{4}

{5}

{6}

{10}

{11,17}

{12}

{14,20,26,27}

{15,16,21}

{18}

{25}

{28}

{31}

{22,23,24,29,30,32

33,34,35,36}

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Example

Spring 2015 25CSE373: Data Structures & Algorithms

P

{1,2,7,8,9,13,19}

{3}

{4}

{5}

{6}

{10}

{11,17}

{12}

{14,20,26,27}

{15,16,21}

{18}

{25}

{28}

{31}

{22,23,24,29,30,32,33,34,35,36}

Find(8) = 7

Find(14) = 20

Union(7,20)

P

{1,2,7,8,9,13,19,14,20,26,27}

{3}

{4}

{5}

{6}

{10}

{11,17}

{12}

{15,16,21}

{18}

{25}

{28}

{31}

{22,23,24,29,30,32,33,34,35,36}

Example: Add edge to M step

Spring 2015 26CSE373: Data Structures & Algorithms

P

{1,2,7,8,9,13,19,14,20,26,27}

{3}

{4}

{5}

{6}

{10}

{11,17}

{12}

{15,16,21}

{18}

{25}

{28}

{31}

{22,23,24,29,30,32

33,34,35,36}

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Pick edge (19,20)

Find (19) = 7

Find (20) = 7

Add (19,20) to M

At the end of while loop

• Stop when P has one set (i.e. all cells connected)

• Suppose green edges are already in M and black edges were

not yet picked

– Add all black edges to M

Spring 2015 27CSE373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

P

{1,2,3,4,5,6,7,… 36}

Done!

A data structure for the union-find ADT

• Start with an initial partition of n subsets

– Often 1-element sets, e.g., {1}, {2}, {3}, …, {n}

• May have any number of find operations

• May have up to n-1 union operations in any order

– After n-1 union operations, every find returns same 1 set

Spring 2015 28CSE373: Data Structures & Algorithms

Teaser: the up-tree data structure

• Tree structure with:

– No limit on branching factor

– References from children to parent

• Start with forest of 1-node trees

• Possible forest after several unions:

– Will use roots for

set names

Spring 2015 29CSE373: Data Structures & Algorithms

1 2 3 4 5 6 7

1

2

3

45

6

7

