
CSE 373 Spring 2013 HW3: AVL
Trees

Background

Information retrieval systems allow users to enter keywords and retrieve articles that
have those keywords associated with them. For example, once a student named Yi Li
wrote a paper called, “Object Class Recognition using Images of Abstract Regions,”
and included the following keywords: ‘object recognition’, ‘abstract regions’, ‘mixture
models’, and ‘EM algorithm’. If someone does a search for all articles about the EM
algorithm, this paper (and many others) will be retrieved.

Assignment

You are to implement an AVL tree and use it to store and retrieve articles. The tree
will be sorted by keyword, and each node will contain an unordered linked list of
Record objects which contain information about each article which corresponds to
that keyword. This image shows the idea:

Getting started: The necessary files are available at
http://www.cs.washington.edu/education/courses/cse373/13sp/homework/hw03/

hw3files.zip. Included in this archive are:

• A Data file which contains records to be read into the data structure.

• Three Java skeleton files, which will, upon your completing them, convert
the Data File into an AVL tree. See the section below which describes these
files in detail.

• Five Query files which contain queries to be run on your data structure.

Required Functionality:

The required functions will appear as stubs with specific arguments in the code we
provide. Note that some functions have extra requirements, stated below:

1

http://www.cs.washington.edu/education/courses/cse373/13sp/homework/hw03/hw3files.zip
http://www.cs.washington.edu/education/courses/cse373/13sp/homework/hw03/hw3files.zip


print() - a recursive function which outputs all keywords in alphabetical order along
with the titles of articles for each keyword. The output should begin as follows:

blobs

Region-Based Image Querying

buildings

Consistent Line Clusters for Building Recognition

causal-relationships

Mining Observational Databases for Causal Relationships

classification-rules

A Theory of Learning Classification Rules

Learning Classification Rules Using Neural Networks

clustering

An Efficient Clustering Algorithm for Large Databases

An Algorithm for Discovering Clusters in Large Spatial Databases

Scaling Clustering Algorithms to Large Databases

Consistent Line Clusters for Building Recognition

... and continue with the rest of the keywords and articles in the correct order. The
keywords are not indented. Each title gets a separate line which begins with a “\t”
(tab) character.

tree stats() - this function will output the following stats about your data struc-
ture:

• the number of insertions that required no rebalancing

• the number of insertions that required only a single rotation

• the number of insertions that required a double rotation

get records() - outputs the list of articles associated with a given keyword. The
output must be formatted as in this example:

KEYWORD medical

47550

Knowledge-Based Image Retrieval with Spatial and Temporal Constraints

Wesley Chu

83528

Query by Example: the CANDID Approach

Paul Kelly

46359

A Content-Based Retrieval System for Medical Images

John Anderson

2



KEYWORD abstraction

NO TITLES FOUND

Note that “KEYWORD” is capitalized and the output of the records has the id,
title, and author on separate lines. Please maintain this format so as to facilitate
grading. If a keyword is not found, please print “NO TITLES FOUND” in all caps
on its own line.

get stats() - this function will read a file of keywords and compute the following
stats about their retrieval:

• minimum number of nodes accessed over all keywords in the list

• maximum number of nodes accessed over all keywords in the list

• average number of nodes accessed over all keywords in the list

Note that the get_stats() and get_records() functions are located in the
test.java file.

Skeleton file details:

The java skeleton files which you must edit are test.java and avl.java.
Record.java contains the data structure for storing the particulars about a single
article.
The main script is run as java test datafile.txt <command [query file]> See
the usage details with java test -h

Turn in:

Please provide the completed avl.java and test.java files. Also, please provide
separate files containing the following:

• the output of java test datafile.txt print in a file called print.txt

• the output of java test datafile.txt tree_stats in a file called tree stats.txt

• the output of java test datafile.txt get_records gr_query.txt in a file
called get records.txt

• the results of java test datafile.txt get_stats query-N.txt where N ∈
{1, 2, 3, 4} (the provided files). Please put the results of each call in get stats N.txt
for the respective N.

3



Write Up:

Please complete the following exercises and turn them in along with your the other
files:

1. You have an empty AVL tree which sorts animals by size, and the following
animals are input in order: ant; mouse; orca whale; raccoon; horse. Please sub-
mit a description of where each element is inserted and what, if any, rotations
are triggered at each insertion. You must include drawings of the tree at every
stages to help illustrate the process.

2. You have a binary tree whose nodes have an integer data field. Implement
in psuedo-code a recursive function which would return the sum of these data
fields.

3. Using at least a half-dozen complete English sentences, answer the following:
How did you feel about this assignment? What parts were difficult for you?
What was the most fun/satisfying part? Also, describe one bug you encoun-
tered during your implementing this data-structure and how you diagnosed it
(If you programmed this perfectly on the first try, please describe your general
bug-fixing procedure).

4. Extra Credit: Write a function which prints the tree in the following “lisp”
format:

(key_of_root (<left subtree>)

(<right subtree))

e.g.

(5 (3 (1 null null)(2 null null))

(8 (6 null null)(10 null null)))

4


