CSE 373 Data Structures SP13 HW2

Problem 1 (7 pts)

Order the following functions by growth rate. Indicate which functions grow at the same rates. $N, \sqrt{N}, N^{1.5}, N^{2}, N \log N, N \log \log N, N \log ^{2} N, N \log \left(N^{2}\right), 2 / N, 2^{N}, 2^{N / 2}, 37, N^{2} \log N, N^{3}$

Problem 2 (18 pts)

For this problem, you will need to write some code in Java. We've provided everything you need to get started in the Java skeleton file located at http://www.cs.washington.edu/education/ courses/cse373/13sp/homework/hw02/HW2Prob2.java

For each of the following six program fragments:
Give an analysis of the running time. Big-Oh will suffice.
Then, implement the code in Java, and give the running time (in milliseconds) for the several values of n listed in the table below. We've set up the skeleton files to make this easier: Look for an "INSERT YOUR CODE HERE" comment; that is where you will add your code. The skeleton is set up to read the value of n from the command line (e.g. java HW2Prob2 2000).

	Big-Oh	$\mathrm{n}=20$	$\mathrm{n}=200$	$\mathrm{n}=2000$
1				
2				
3				
4				
5				
6				

Finally, using the completed table above, compare your analysis with the actual running times and discuss.

The six fragments:

1. sum $=0$;
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}++$)
```
        sum++;
```

4. sum $=0$;
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}++$) for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{i} ; \mathrm{j}++$) sum++;
5. sum $=0$;
6. sum $=0$;
```
    for (i=0; i<n; i++)
        for (j=0; j<n; j++)
        sum++;
```

3. sum $=0$;
for ($i=0 ; i<n ; i++$)
for ($j=0 ; j<n * n ; j++$)
sum++;
```
for (i=0; i<n; i++)
    for (j=0; j<i*i; j++)
            for (k=0; k<j; k++)
                sum++;
```

6. sum $=0$;
for ($i=1 ; i<n ; i++$)
for ($j=1 ; j<i * i ; j++$)
if ($\mathrm{j} \% \mathrm{i}==0$)
for ($k=0 ; k<j ; k++$)
sum++;

Problem 3 (8 pts)

Consider the following algorithm (known as Horner's rule) to evaluate $f(x)=\sum_{i=0}^{N} a_{i} x^{i}$:
poly = 0;
for (i = n; i >= 0; i--)
poly $=x$ * poly $+\mathrm{a}[\mathrm{i}]$;

1. Show how the steps are performed by this algorithm for $x=3, f(x)=4 x^{4}+8 x^{3}+x+2$ by filling out the table. Remember that the array a[] contains the coefficients of the various powers of x .

i	poly
4	
3	
2	
1	
0	

2. What is the running time of this algorithm? Give your answer in Big-Oh form and explain how you reached that conclusion.

Problem 4 (5 pts)

Show that the function $6 n^{3}+30 n+403$ is $O\left(n^{3}\right)$.
You will need to use the formal definition of $O(f(n))$ to do this (see Weiss p29). In other words, find values for c and n_{0} such that the definition of Big-Oh holds true as we did with the examples in lecture.

Problem 5 (8 pts)

Given the following recursive search function, prove by induction that it correctly returns 1 if the value val is in the array v and 0 otherwise. (Hint: try working out all the possibilities for arrays of size $=1$ to get a sense of how your proof should proceed.)

```
int search(v[]: integer array, size: integer, val: integer)
    if (size == 0) return 0;
    else
        if (v[size-1] == val) return 1;
        else return search(v, size-1, val);
```

You will need to provide at least these details in a complete proof:

Basis: The case where size $=0$

Inductive Hypothesis: Assume...

Inductive Step:

