
CSE 373 Data Structures SP13 HW2

Problem 1 (7 pts)

Order the following functions by growth rate. Indicate which functions grow at the same rates.

N,
√
N,N1.5, N2, N logN,N log logN,N log2N,N log(N2), 2/N, 2N , 2N/2, 37, N2 logN,N3

Problem 2 (18 pts)

For this problem, you will need to write some code in Java. We’ve provided everything you need

to get started in the Java skeleton file located at http://www.cs.washington.edu/education/

courses/cse373/13sp/homework/hw02/HW2Prob2.java

For each of the following six program fragments:

Give an analysis of the running time. Big-Oh will suffice.

Then, implement the code in Java, and give the running time (in milliseconds) for the several

values of n listed in the table below. We’ve set up the skeleton files to make this easier: Look

for an ”INSERT YOUR CODE HERE” comment; that is where you will add your code. The

skeleton is set up to read the value of n from the command line (e.g. java HW2Prob2 2000).

Big-Oh n=20 n=200 n=2000

1

2

3

4

5

6

Finally, using the completed table above, compare your analysis with the actual running times

and discuss.

1

http://www.cs.washington.edu/education/courses/cse373/13sp/homework/hw02/HW2Prob2.java
http://www.cs.washington.edu/education/courses/cse373/13sp/homework/hw02/HW2Prob2.java

The six fragments:

1. sum = 0;

for (i=0; i<n; i++)

sum++;

2. sum = 0;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

sum++;

3. sum = 0;

for (i=0; i<n; i++)

for (j=0; j<n*n; j++)

sum++;

4. sum = 0;

for (i=0; i<n; i++)

for (j=0; j<i; j++)

sum++;

5. sum = 0;

for (i=0; i<n; i++)

for (j=0; j<i*i; j++)

for (k=0; k<j; k++)

sum++;

6. sum = 0;

for (i=1; i<n; i++)

for (j=1; j<i*i; j++)

if (j % i == 0)

for (k=0; k<j; k++)

sum++;

Problem 3 (8 pts)

Consider the following algorithm (known as Horner’s rule) to evaluate f(x) =
∑N

i=0 aix
i :

poly = 0;

for(i = n; i >= 0; i--)

poly = x * poly + a[i];

1. Show how the steps are performed by this

algorithm for x = 3, f(x) = 4x4 +8x3 +x+2

by filling out the table. Remember that the

array a[] contains the coefficients of the var-

ious powers of x.

i poly

4

3

2

1

0

2

2. What is the running time of this algorithm? Give your answer in Big-Oh form and explain

how you reached that conclusion.

Problem 4 (5 pts)

Show that the function 6n3 + 30n + 403 is O(n3).

You will need to use the formal definition of O(f(n)) to do this (see Weiss p29). In other words,

find values for c and n0 such that the definition of Big-Oh holds true as we did with the examples

in lecture.

Problem 5 (8 pts)

Given the following recursive search function, prove by induction that it correctly returns 1 if

the value val is in the array v and 0 otherwise. (Hint: try working out all the possibilities for

arrays of size = 1 to get a sense of how your proof should proceed.)

int search(v[]: integer array, size: integer, val: integer)

if (size == 0) return 0;

else

if (v[size-1] == val) return 1;

else return search(v, size-1, val);

You will need to provide at least these details in a complete proof:

Basis: The case where size = 0

Inductive Hypothesis: Assume...

Inductive Step:

3

