Sorting (Chapter 7 in Weiss)

CSE 373

Data Structures & Algorithms
Ruth Anderson

5/28/2010

Today's Outline

- Announcements
 - No class on Monday 5/31
 - Homework #6/7 due Thurs 6/3 at 11:45pm.
- Graphs
 - Minimum Spanning Trees
 - Sorting

5/28/2010

Why Sort?

5/28/2010

3

Sorting: The Big Picture

Given *n* <u>comparable</u> elements in an array, sort them in an increasing (or decreasing) order.

Specialized Simple Fancier Comparison Handling algorithms: algorithms: lower bound: algorithms: huge data $O(n^2)$ $O(n \log n)$ $\Omega(n \log n)$ sets Insertion sort Heap sort Bucket sort External sorting Selection sort Merge sort Radix sort Bubble sort Quick sort Shell sort

Insertion Sort: Idea

- At the k^{th} step, put the k^{th} input element in the correct place among the first k elements
- **Result**: After the k^{th} step, the first k elements are sorted.

Runtime:

worst case : best case : average case :

5/28/2010

Selection Sort: Idea

- Find the smallest element, put it 1st
- Find the next smallest element, put it 2nd
- Find the next smallest, put it 3rd
- And so on ...

5/28/2010

5/28/2010 6

```
Selection Sort: Code

void SelectionSort (Array a[0..n-1]) {
	for (i=0, i<n; ++i) {
		 j = Find index of smallest entry in a[i..n-1]
		 Swap(a[i],a[j])
}

Runtime:
		 Worst case :
		 best case :
		 5282010 average case :
		 8
```

Student Activity

Sorts using other data structures:

5/28/2010

HeapSort: Using Priority Queue ADT (heap)

Shove all elements into a priority queue, take them out smallest to largest.

Runtime: 5/28/2010

10

12

AVL Sort

Runtime:

Would the simpler "Splay sort" take any longer than this?

28/2010

Divide and conquer

- A common and important technique in algorithms
 - Divide problem into parts
 - Solve parts
 - Merge solutions

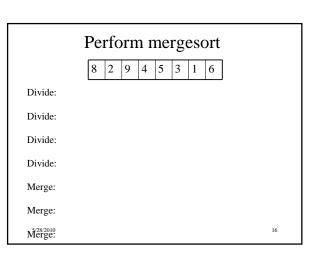
5/28/2010

Divide and Conquer Sorting

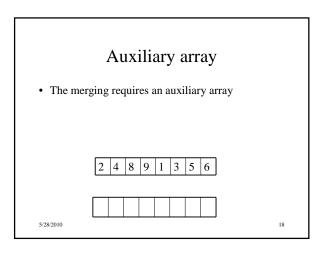
- MergeSort:
 - Divide array into two halves
 - Recursively sort left and right halves
 - Merge halves
- QuickSort:
 - Partition array into small items and large items
 - Recursively sort the two smaller portions

5/28/2010 13

Merge Sort?



Merge Sort: Complexity



Properties of MergeSort

• Definition: In-place

- Can be done without extra memory

• MergeSort: <u>Not</u> in-place - Requires Auxiliary array

5/28/2010 19

Quicksort

- · Uses divide and conquer
- Doesn't require O(N) extra space like MergeSort
- Partition into left and right
 - Left less than pivot
 - Right greater than pivot
- · Recursively sort left and right
- · Concatenate left and right

28/2010 20

Quick Sort

- 1. Pick a "pivot"
- 2. Divide into less-than & greater-than pivot
- 3. Sort each side recursively

21

23

The steps of QuickSort S 13 81 43 31 57 75 0 Select pivot value 13 65 S2 75 81 QuickSort(S₁) and QuickSort(S₂) Presto! S is sorted 5/28/2010

Selecting the pivot

• Ideas?

5/28/2010

Perform quicksort

8 2 9 4 5 3 1 6

Divide:

Divide:

Divide:

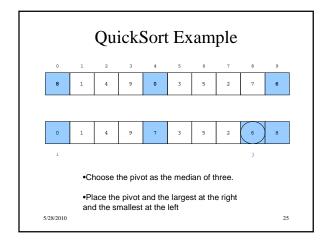
Divide:

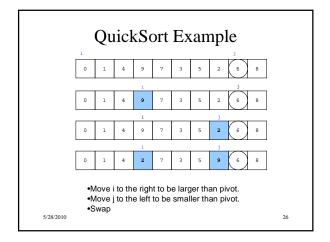
Merge:

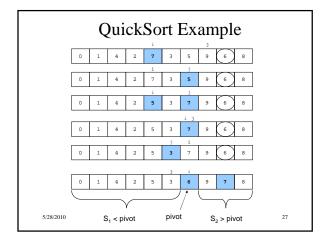
Merge:

Merge:

24







Quicksort(A[]: integer array, left,right : integer): { pivotindex : integer; if left + CUTOFF < right then pivot := mediam3(A,left,right); pivotindex := Partition(A,left,right-1,pivot); Quicksort(A, left, pivotindex - 1); Quicksort(A, pivotindex + 1, right); else Insertionsort(A,left,right); } Don't use quicksort for small arrays. CUTOFF = 10 is reasonable.</pre>

Cutoff for quicksort

- Quicksort performs poorly on small sets
 In fact insertion sort does better
- Small sets occur often due to the recursion
- So below a certain set size, or cutoff, switch to insertion sort

5/28/2010

Student Activity

Recurrence Relations

Write the recurrence relation for QuickSort:

- Best Case:
- Worst Case:

5/28/2010

QuickSort: Best case complexity

QuickSort: Worst case complexity

5/28/2010 31

5/28/2010 32

QuickSort: Average case complexity

Turns out to be $O(n \log n)$

See Section 7.7.5 for an idea of the proof.

Don't need to know proof details for this course.

5/28/2010 33

Quicksort Complexity

• Worst case: O(n²)

• Best case: O(n log n)

• Average Case: O(n log n)

5/28/2010 34

Mergesort and massive data

- MergeSort is the basis of massive sorting
- Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
- Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access
- In-memory sorting of reasonable blocks can be combined with larger mergesorts

35

• Mergesort can leverage multiple disks 5/28/2010

Features of Sorting Algorithms

- In-place
 - Sorted items occupy the same space as the original items. (No copying required, only O(1) extra space if any.)
- Stable
 - Items in input with the same value end up in the same order as when they began.

5/28/2010 3

How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in O(N log N) best case running time
- Can we do any better?
- No, if the basic action is a comparison.

5/28/2010

Sorting Model

- Recall our basic assumption: we can <u>only compare</u> two elements at a time
 - we can only reduce the possible solution space by half each time we make a comparison
- · Suppose you are given N elements
 - Assume no duplicates
- How many possible orderings can you get?
 - Example: a, b, c (N = 3)

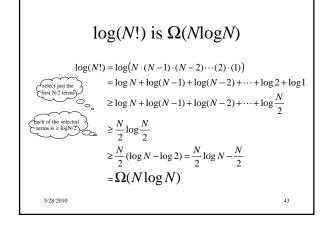
28/2010 39

Permutations

- How many possible orderings can you get?
 - Example: a, b, c (N = 3)
 - (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
 - -6 orderings = 3.2.1 = 3! (ie, "3 factorial")
 - All the possible permutations of a set of 3 elements
- · For N elements
 - N choices for the first position, (N-1) choices for the second position, ..., (2) choices, 1 choice
 - $N(N-1)(N-2)\cdots(2)(1) = N!$ possible orderings

5/28/2010

40



$\Omega(N \log N)$

- Run time of any comparison-based sorting algorithm is $\Omega(N \log N)$
- Can we do better if we don't use comparisons?

5/28/2010

44

BucketSort (aka BinSort)

If all values to be sorted are known to be between 1 and K, create an array count of size K, **increment** counts while traversing the input, and finally output the result

Example K=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

count array						
1						
2						
3						
4						
5						

Running time to sort n items?

BucketSort Complexity: O(*n*+*K*)

- Case 1: *K* is a constant
 - BinSort is linear time
- Case 2: K is variable
 - Not simply linear time
- Case 3: K is constant but large (e.g. 2^{32})

− ???

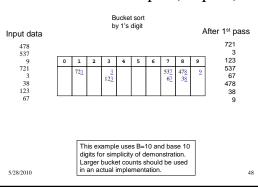
5/28/2010

Fixing impracticality: RadixSort

- Radix = "The base of a number system"
 - We'll use 10 for convenience, but could be anything
- <u>Idea</u>: BucketSort on each **digit**, least significant to most significant (lsd to msd)

5/28/2010 47

Radix Sort Example (1st pass)



Radix Sort Example (2nd pass)

After 1st pass	Bucket sort by 10's digit									After 2 nd pass	
3 123	0	1	2	3	4	5	6	7	8	9	721
537 67 478 38	<u>0</u> 3 <u>0</u> 9		7 <u>2</u> 1 1 <u>2</u> 3	5 <u>3</u> 7 <u>3</u> 8			<u>6</u> 7	4 <u>7</u> 8			123 537 38 67
9											478
5/28/2010											49

Radix Sort Example (3rd pass)

After 2 nd pass 3 9		Bucket sort by 100's digit									After 3 rd pass
721	0	1	2	3	4	5	6	7	8	9	38
537 <u>0</u> 09 38 <u>0</u> 38	003 009 038 067	<u>1</u> 23			<u>4</u> 78	<u>5</u> 37		<u>7</u> 21			67 123 478 537 721

Invariant: after k passes the low order k digits are sorted.

5/28/2010

RadixSort

BucketSort on lsd:

* Input:126, 328, 636, 341, 416, 131, 328

BucketSort on next-higher digit:

BucketSort on msd:

Radixsort: Complexity

- · How many passes?
- How much work per pass?
- Total time?
- Conclusion?
- In practice
 - RadixSort only good for large number of elements with relatively small values
- 5/28/2010 Hard on the cache compared to MergeSort/QuickSort 52

Internal versus External Sorting

- Need sorting algorithms that minimize disk/tape access time
- External sorting Basic Idea:

5/28/2010

50

- Load chunk of data into RAM, sort, store this "run" on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Text gives some examples

5/28/2010 53

Summary of sorting

- O(n²) average, worst case:
 - Selection Sort, Bubblesort, Insertion sort
- $O(n^{4/3})$ worst case:
 - Shell sort
- O(n log n) average case:
 - Heapsort: in-place, not stable
 - Mergesort: O(n) extra space, stable, massive data
 - Quicksort: Claimed fastest in practice, but $O(n^2)$ worst case. Recursion/stack requirement. Not stable.
- $\Omega(n \log n)$ worst and average case:
 - Any comparison-based sorting algorithm
- O(n)
 - Radix sort: Fast and stable. Not comparison based. Not in-place.
 Poor memory locality can undercut performance.