Memory Hierarchy & Data Locality

CSE 373

Data Structures & Algorithms
Ruth Anderson

5/10/2010

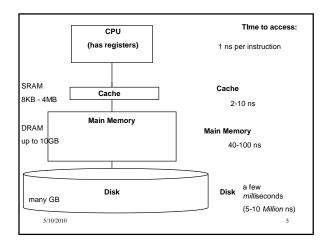
Today's Outline

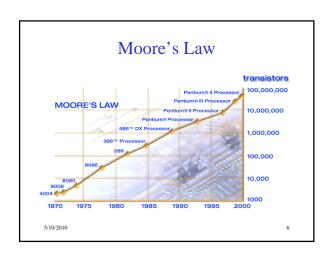
- Admin:
 - HW #5 due Thursday, May 20 at 11:45pm
 - Midterm #2, Wed May 19th.
- Memory Hierarchy and Locality
- B-Trees

5/10/2010

Why do we need to know about the memory hierarchy/locality?

- One of the assumptions that Big-Oh makes is that all operations take the same amount of time.
- · Is that really true?


5/10/2010


Definitions

Cycle – (for our purposes) the time it takes to execute a single simple instruction. (ex. Add 2 registers together)

Memory Latency – time it takes to access memory


5/10/2010

Processor-Memory Performance Gap

• x86 CPU speed (100x over 10 years)

What can be done?

- **Goal**: Attempt to reduce the number of accesses to the slower levels.
- How?

5/10/2010

Locality

Temporal Locality (locality in time) – If an item is referenced, it will tend to be referenced again soon.

Spatial Locality (locality in space) – If an item is referenced, items whose addresses are close by will tend to be referenced soon

5/10/2010

11

Caches

• Each level is a **sub-set** of the level below.

Cache Hit – address requested is in cache
Cache Miss – address requested is NOT in cache
Cache line size (chunk size) – the number of
contiguous bytes that are moved into the cache at one
time

5/10/2010

Examples

$$x = a + 6;$$
 $x = a[0] + 6;$
 $y = a + 5;$ $y = a[1] + 5;$
 $z = 8 * a;$ $z = 8 * a[2];$

5/10/2010

Locality and Data Structures

• Which has (at least the potential for) better spatial locality, arrays or linked lists?

5/10/2010

12