Sorting (Chapter 7 in Weiss)

CSE 373 Data Structures & Algorithms Ruth Anderson

12/06/2010

Today's Outline

- Announcements
 - Homework #6/7 due Thurs 12/9 at 11:45pm.
- Sorting

12/06/2010

12/06/2010

Why Sort?

12/06/2010

Sorting: The Big Picture

Given *n* comparable elements in an array, sort them in an increasing (or decreasing) order.

sets

sorting

Specialized Handling Simple Fancier Comparison algorithms: algorithms: lower bound: algorithms: huge data $O(n^2)$ $O(n \log n)$ $\Omega(n \log n)$ Insertion sort Heap sort Bucket sort External Selection sort Merge sort Radix sort Bubble sort Quick sort Shell sort

Insertion Sort: Idea

- At the kth step, put the kth input element in the correct place among the first k elements
- **Result**: After the *k*th step, the first k elements are sorted.

Runtime:

worst case best case average case :

12/06/2010

Selection Sort: Idea

- Find the smallest element, put it 1st
- Find the next smallest element, put it 2nd
- Find the next smallest, put it 3rd
- · And so on ...

12/06/2010

Selection Sort: Code void SelectionSort (Array a[0..n-1]) { for (i=0, i<n; ++i) { j = Find index of smallest entry in a[i..n-1]</pre> Swap(a[i],a[j]) Runtime: worst case best case average case :

```
Sorts using other data structures:
                How?
                                 Runtime?
AVL Sort?
Heap Sort?
12/06/2010
```

HeapSort: Using Priority Queue ADT (heap)

23 44 756 13 18 801 27

Shove all elements into a priority queue, take them out smallest to largest.

12/06/2010

10

12

AVL Sort

Runtime:

Would the simpler "Splay sort" take any longer than this?

12/06/2010

Divide and conquer

- A common and important technique in algorithms
 - Divide problem into parts
 - Solve parts
 - Merge solutions

12/06/2010

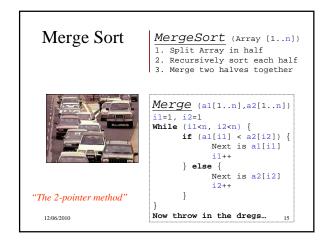
- MergeSort:
 - Divide array into two halves
 - Recursively sort left and right halves
 - Merge halves
- · QuickSort:
 - Partition array into small items and large items

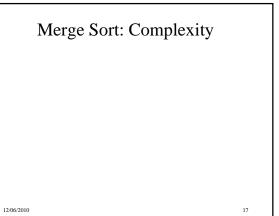
Divide and Conquer Sorting

- Recursively sort the two smaller portions

12/06/2010 13

Merge Sort?





Auxiliary array • The merging requires an auxiliary array 2 4 8 9 1 3 5 6 1206/2010

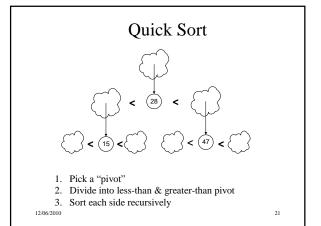
Properties of MergeSort • Definition: In-place - Can be done without extra memory

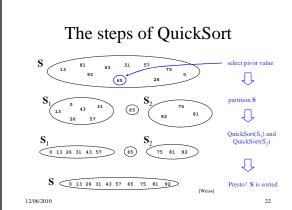
• MergeSort: Not in-place
- Requires Auxiliary array

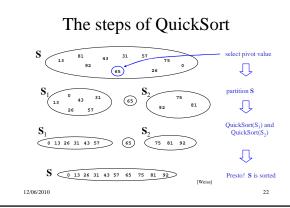
Quicksort

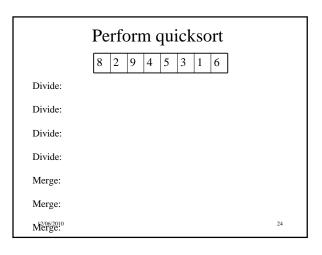
- · Uses divide and conquer
- Doesn't require O(N) extra space like MergeSort
- Partition into left and right
 - Left less than pivot
 - Right greater than pivot
- · Recursively sort left and right
- · Concatenate left and right

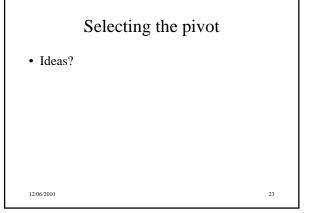
20

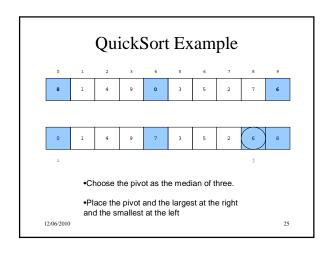


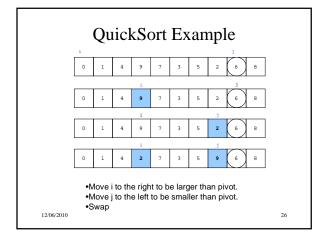


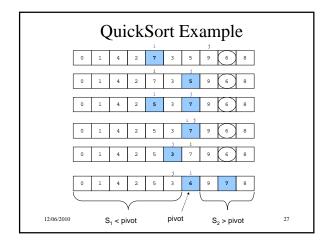












Recursive Quicksort

```
Quicksort(A[]: integer array, left,right : integer): {
pivotindex : integer;
if left + CUTOFF \le right then
  pivot := median3(A,left,right);
  pivotindex := Partition(A,left,right-1,pivot);
  Quicksort(A, left, pivotindex - 1);
  Quicksort(A, pivotindex + 1, right);
else
  Insertionsort(A,left,right);
}
```

Don't use quicksort for small arrays. CUTOFF = 10 is reasonable.

12/06/2010

12/06/2010

Cutoff for quicksort

- Quicksort performs poorly on small sets
 In fact insertion sort does better
- Small sets occur often due to the recursion
- So below a certain set size, or cutoff, switch to insertion sort

Student Activity

Recurrence Relations

Write the recurrence relation for QuickSort:

- Best Case:
- Worst Case:

12/06/2010

30

QuickSort:
Best case complexity

QuickSort: Worst case complexity

QuickSort: Average case complexity

Turns out to be $O(n \log n)$

See Section 7.7.5 for an idea of the proof.

Don't need to know proof details for this course.

06/2010 33

12/06/2010 32

Quicksort Complexity

• Worst case: O(n2)

• Best case: O(n log n)

• Average Case: O(n log n)

12/06/2010 34

Mergesort and massive data

- MergeSort is the basis of massive sorting
- Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
- Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access
- In-memory sorting of reasonable blocks can be combined with larger mergesorts
- Mergesort can leverage multiple disks 12/06/2010

Features of Sorting Algorithms

- In-place
 - Sorted items occupy the same space as the original items. (No copying required, only O(1) extra space if any.)
- Stable
 - Items in input with the same value end up in the same order as when they began.

12/06/2010 36

How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in O(N log N) best case running time
- Can we do any better?
- No, if the basic action is a comparison.

Sorting Model

- Recall our basic assumption: we can <u>only compare</u> two elements at a time
 - we can only reduce the possible solution space by half each time we make a comparison
- Suppose you are given N elements
 - Assume no duplicates
- How many possible orderings can you get?
 - Example: a, b, c (N = 3)

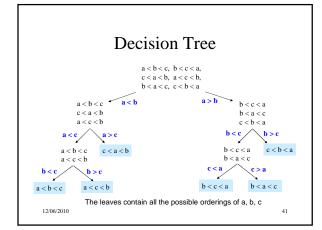
12/06/2010

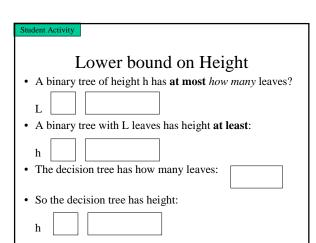
39

Permutations

- How many possible orderings can you get?
 - Example: a, b, c (N = 3)
 - (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
 - -6 orderings = 3.2.1 = 3! (ie, "3 factorial")
 - All the possible permutations of a set of 3 elements
- For N elements
 - N choices for the first position, (N-1) choices for the second position, ..., (2) choices, 1 choice
 - $N(N-1)(N-2)\cdots(2)(1) = N!$ possible orderings

2/06/2010 40





$\log(N!) \text{ is } \Omega(N\log N)$ $\log(N!) = \log(N \cdot (N-1) \cdot (N-2) \cdot \cdot \cdot (2) \cdot \cdot (1))$ $= \log N + \log(N-1) + \log(N-2) + \cdot \cdot \cdot + \log 2 + \log 1$ $\geq \log N + \log(N-1) + \log(N-2) + \cdot \cdot \cdot + \log \frac{N}{2}$ $\geq \frac{N}{2} \log N - \log N - \log N - \log N - \frac{N}{2}$ $\geq \frac{N}{2} (\log N - \log N)$ 1206/201043

$\Omega(N \log N)$

- Run time of any comparison-based sorting algorithm is $\Omega(N~log~N)$
- Can we do better if we don't use comparisons?

BucketSort (aka BinSort)

If all values to be sorted are known to be between 1 and K, create an array count of size K, increment counts while traversing the input, and finally output the result

Example K=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

	1 .
count	array
1	
2	
3	
4	
5	

Running time to sort n items?

BucketSort Complexity: O(*n*+*K*)

- Case 1: *K* is a constant
 - BinSort is linear time
- Case 2: *K* is variable
 - Not simply linear time
- Case 3: *K* is constant but large (e.g. 2³²)
 - ???

12/06/2010

Fixing impracticality: RadixSort

- Radix = "The base of a number system"
 - We'll use 10 for convenience, but could be anything
- Idea: BucketSort on each digit, least significant to most significant (lsd to msd)

12/06/2010

Radi	X	Sc	rt	E	Хa	ım	pl	e	(1	sı]	pass)
Input data				_	ucke y 1's					,	After 1 st pass
478 537											721 3
9	0	1	2	3	4	5	6	7	8	9	123
721 3 38 123 67		721		3 12 <u>3</u>				53 <u>7</u> 6 <u>7</u>	47 <u>8</u> 3 <u>8</u>	9	537 67 478 38 9
12/06/2010		dią La	gits fo irger	or sim bucke	e use plicity et cou imple	y of d unts s	emoi hould	nstrat d be i	ion.		48

Radix Sort Example (2nd pass)

After 1st pass				After 2 nd pass 3 9							
3 123	0	1	2	3	4	5	6	7	8	9	721
537 67 478	<u>0</u> 3 <u>0</u> 9		7 <u>2</u> 1 1 <u>2</u> 3	5 <u>3</u> 7 <u>3</u> 8			<u>6</u> 7	4 <u>7</u> 8			123 537 38 67
38 9											478

12/06/2010

Radix Sort Example (3rd pass)

After 2 nd pass				After 3 rd pas							
721	0	1	2	3	4	5	6	7	8	9	38
123	003	<u>1</u> 23			<u>4</u> 78	<u>5</u> 37		<u>7</u> 21			67
537	009										123
38	038										478
67	<u>0</u> 67										537
478											721

Invariant: after k passes the low order k digits are sorted.

12/06/2010

	udent A	ctivity	•	R	Radi t:126,			41, 41	6, 131	1, 328	
	0	1	2	3	4	5	6	7	8	9	
Bı	SucketSort on next-higher digit:										
	0	1	2	3	4	5	6	7	8	9	
Вι	sucketSort on msd:										
	12/06	/2010								51	

Radixsort: Complexity

- · How many passes?
- How much work per pass?
- Total time?
- Conclusion?
- In practice
 - RadixSort only good for large number of elements with relatively small values

12/06/2019 Hard on the cache compared to MergeSort/QuickSort 52

Internal versus External Sorting

- Need sorting algorithms that minimize disk/tape access time
- External sorting Basic Idea:
 - Load chunk of data into RAM, sort, store this "run" on disk/tape
 - Use the Merge routine from Mergesort to merge runs $\,$
 - Repeat until you have only one run (one sorted chunk)
 - Text gives some examples

12/06/2010

Summary of sorting

- O(n²) average, worst case:
 - Selection Sort, Bubblesort, Insertion sort
- O(n^{4/3}) worst case:
 - Shell sort
- O(n log n) average case:
 - Heapsort: in-place, not stable
 - Mergesort: O(n) extra space, stable, massive data
 - Quicksort: Claimed fastest in practice, but O(n²) worst case.
 Recursion/stack requirement. Not stable.
- $\Omega(n \log n)$ worst and average case:
 - Any comparison-based sorting algorithm
- O(n)

53

Radix sort: Fast and stable. Not comparison based. Not in-place.
 Poor memory use can undercut performance.