Hashing Chapter 5 in Weiss CSE 373 Data Structures and Algorithms Ruth Anderson

Today's Outline

- Announcements
 - Homework #4 due Fri, Nov 5 at the beginning of
- Today's Topics:
 - Disjoint Sets & Dynamic Equivalence
 - Hashing

11/03/2010

Hash Tables	
 Constant time accesses! A hash table is an array of some fixed size, usually a prime number. General idea: hash function: h(K) 	hash table 0
key space (e.g., integers, strings) TableSiz	ze –1 []
11/03/2010	3

Hash Tables

Key space of size M, but we only want to store subset of size N, where N << M.

- Keys are identifiers in programs. Compiler keeps track of them in a symbol table.
- Keys are student names. We want to look up student records quickly by name.
- Keys are chess configurations in a chess playing program.
- Keys are URLs in a database of web pages.

11/03/2010 4

Example	e
	0
key space = integers	1
• TableSize = 10	2
	3
• $\mathbf{h}(\mathbf{K}) = \mathbf{K} \mod 10$	4
	5
• Insert : 7, 18, 41, 94	6
	7
	8
	9
11/03/2010	5

key space =TableSize =	· ·	0	
• h (K) = K m		1 2	
• Insert: 7, 1		3 4	
1 msert. 7, 10, 41	0, 41, 54	5	

Hash Functions

- 1. simple/fast to compute,
- 2. Avoid collisions
- 3. have keys distributed evenly among cells.

Perfect Hash function:

11/03/2010

Sample Hash Functions:

- key space = strings
- $s = s_0 s_1 s_2 \dots s_{k-1}$
- 1. $h(s) = s_0 \mod TableSize$
- 2. $h(s) = \left(\sum_{i=0}^{k-1} s_i\right)$ mod TableSize
- 3. $h(s) = \left(\sum_{i=0}^{k-1} s_i \cdot 37^{-i}\right) \mod Table Size$

11/03/2010

Designing a Hash Function for web URLs

$$s = s_0 \ s_1 \ s_2 \dots s_{k-1}$$

Issues to take into account:

h(s) =

Student Activity

Collision Resolution

Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:

- 1. Separate Chaining
- 2. Open Addressing (linear probing, quadratic probing, double hashing)

11/03/2010

Separate Chaining

11/03/2010

42

11

Separate chaining: All keys that map to the same hash value are kept in a list ("bucket").

Analysis of find

• The load factor, λ , of a hash table is the ratio:

 $\frac{N}{N}$ \leftarrow no. of elements

 $M \leftarrow table size$

For separate chaining, $\lambda = \text{average \# of elements in a }$ bucket

- · unsuccessful:
- successful:

11/03/2010 12

How big should the hash table be?

• For Separate Chaining:

11/03/2010

3/2010

tableSize: Why Prime?

- Suppose
 - data stored in hash table: 7160, 493, 60, 55, 321, 900, 810
 - tableSize = 10 data hashes to 0, 3, <u>0</u>, 5, 1, <u>0</u>, <u>0</u>

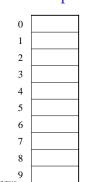
- tableSize = 11 data hashes to 10, 9, 5, 0, 2, <u>9</u>, 7 Real-life data tends to have a pattern

Being a multiple of 11 is usually *not* the pattern ©

14

11/03/2010

Open Addressing



13

• Linear Probing: after checking spot h(k), try spot h(k)+1, if that is full, try h(k)+2, then h(k)+3, etc.

15

17

Terminology Alert!

"Open Hashing" "Closed Hashing" equals equals "Separate Chaining" "Open Addressing"

Weiss

11/03/2010

Linear Probing

f(i) = i

• Probe sequence:

 $\begin{array}{ll} 0^{th} \ probe = \ h(k) \ mod \ TableSize \\ 1^{th} \ probe = (h(k)+1) \ mod \ TableSize \\ 2^{th} \ probe = (h(k)+2) \ mod \ TableSize \\ & \ldots \\ i^{th} \ probe = (h(k)+i) \ mod \ TableSize \end{array}$

11/03/2010

Linear Probing – Clustering

no collision

no collision

UNICIPATION DEPOSITION DEPO

Load Factor in Linear Probing

- For any $\lambda < 1$, linear probing will find an empty slot
- Expected # of probes (for large table sizes)
 - successful search:

$$\frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)$$

unsuccessful search:

$$\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^2}\right)$$

- $\frac{1}{2} \Biggl(1 + \frac{1}{(1-\lambda)^2} \Biggr)$ Linear probing suffers from *primary clustering*
- Performance quickly degrades for $\lambda > 1/2$

11/03/2010

19

Quadratic Probing

 $f(i) = i^2$

Less likely to encounter Primary Clustering

· Probe sequence:

```
0^{th} probe = h(k) mod TableSize
1^{th} probe = (h(k) + 1) mod TableSize
2^{th} probe = (h(k) + 4) mod TableSize
3^{th} probe = (h(k) + 9) mod TableSize
```

 i^{th} probe = $(h(k) + i^2)$ mod TableSize

11/03/2010

20

Quadratic Probing 0 1 Insert: 89 2 18 3 49 58 4 79 6 7 8 11/03/2010 21

Quadratic Probing: • $h(k) = k \mod 7$ 0 · Perform these inserts: - Insert(65) 2 93 3 - Insert(10) 4 - Insert(47) 5 6 76 11/03/2010

Quadratic Probing Example insert(76) insert(40) insert(48) insert(55) insert(5) 40%7 = 5 5%7 = 5 76%7 = 648%7 = 655%7 = 6 But... insert(47) 47%7 = 511/03/2010 23

Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$ If size is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in size/2 probes or fewer. - show for all 0 ≤ i,j ≤ size/2 and i ≠ j $(h(x) + i^2) \mod size \neq (h(x) + j^2) \mod size$ - by contradiction: suppose that for some $i \neq j$: $(h(x) + i^2)$ mod size = $(h(x) + j^2)$ mod size \Rightarrow i² mod size = j² mod size $\Rightarrow (i^2 - j^2) \text{ mod size} = 0$ $\Rightarrow [(i + j)(i - j)] \text{ mod size} = 0$ BUT size does not divide (i-j) or (i+j) 11/03/2010 24

Quadratic Probing: Properties

- For any $\lambda < \frac{1}{2}$, quadratic probing will find an empty slot; for bigger λ , quadratic probing may find a slot
- Quadratic probing does not suffer from *primary* clustering: keys hashing to the same *area* are not bad
- But what about keys that hash to the same spot?
 - Secondary Clustering!

11/03/2010

25

Double Hashing

f(i) = i * g(k)

where g is a second hash function

· Probe sequence:

```
0^{th} \text{ probe} = h(k) \text{ mod TableSize}
```

 1^{th} probe = (h(k) + g(k)) mod TableSize

 2^{th} probe = (h(k) + 2*g(k)) mod TableSize

 $3^{th} probe = (h(k) + 3*g(k)) mod TableSize$

. . .

 i^{th} probe = $(h(\underline{k}) + i*g(\underline{k}))$ mod TableSize

/03/2010 26

Double Hashing Example

 $\begin{array}{l} i^{th}\;probe=(h(\underline{k})+i^{*}g(\underline{k}))\;mod\;TableSize\\ h(k)=k\;mod\;7\;and\;g(k)=5-(k\;mod\;5) \end{array}$

n(k) = k mod r and g(k) = 0 (k mod 0)						
76	93	40	47	10	55	
0	0	0	0	0	0	
11/03/2010					27	

Resolving Collisions with Double Hashing

11/03/2010

$$\label{eq:hash Functions:} \begin{split} \hline Hash Functions: \\ H(k) &= k \bmod M \\ H_2(k) &= 1 + ((k/M) \bmod (M\text{-}1)) \\ M &= \end{split}$$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13

28

33

147

28

Rehashing

Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- · When to rehash?
 - half full ($\lambda = 0.5$)
 - when an insertion fails
 - some other threshold
- Cost of rehashing?

11/03/2010

29

Hashing Summary

43

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
- Dynamic hash tables have good amortized complexity.

11/03/2010

10 30