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Priority Queues

CSE 373
Data Structures & Algorithms

Ruth Anderson
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Today’s Outline

• Announcements
– Homework #3 due Thurs, Oct 28, 11:45pm.

• Today’s Topics: 
– Priority Queues

• Binary Min Heap - buildheap
• D-Heaps
• Leftist Heaps
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Facts about Binary Min Heaps
Observations:
• finding a child/parent index is a multiply/divide by two

• operations jump widely through the heap

• each percolate step looks at only two new nodes

• inserts are at least as common as deleteMins

Realities:
• division/multiplication by powers of two are equally fast

• looking at onlytwo new pieces of data: bad for cache!

• with huge data sets, disk accesses dominate
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Representing Complete 
Binary Trees in an Array
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implicit (array) implementation:
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CPU

Cache

Memory

Disk

Cycles to access:
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A Solution: d-Heaps

• Each node has d children

• Still representable by 
array

• Good choices for d:
– (choose a power of two 

for efficiency)

– fit one set of children in a 
cache line

– fit one set of children on a 
memory page/disk block
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Operations on d-Heap

• Insert       :    runtime =

• deleteMin:   runtime = 
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Priority Queues

(Leftist Heaps)
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One More Operation

• Merge two heaps. Ideas?
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New Operation: Merge

Given two heaps, merge them into one heap
– first attempt: insert each element of the smaller 

heap into the larger. 

runtime:

– second attempt: concatenate binary heaps’
arrays and run buildHeap.

runtime:
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Leftist Heaps

Idea: 

Focus all heap maintenance work in one 
small part of the heap

Leftist heaps:
1. Most nodes are on the left

2. All the merging work is done on the right
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null path length (npl) of a node x = the number of nodes between x
and a null in its subtree

OR
npl(x) = min distance to a descendant with 0 or 1 children 

Definition: Null Path Length

• npl(null) = -1

• npl(leaf, aka zero children) = 0

• npl(node with one child) = 0

000

0?1

??

?

Equivalent definitions:

1. npl(x) is the height of largest
perfect subtree rooted at x

2. npl(x) = 1 + min{npl(left(x)), npl(right(x))}

0
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Leftist Heap Properties
• Heap-order property

– parent’s priority value is ≤ to childrens’ priority 
values

– result: minimum element is at the root

• Leftist property
– For every node x, npl(left(x)) ≥ npl(right(x))

– result: tree is at least as “heavy” on the left as the right

Are leftist trees…
complete? 
balanced? 10/25/2010 14

Are These Leftist?
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Every subtree of a leftist 
tree is leftist!
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Right Path in a Leftist Tree is Short (#1)

Claim: The right path is as short as any in the tree.
Proof: (By contradiction)

R

x

L
D2

D1

Pick a shorter path:   D1 < D2

Say it diverges from right path at x

npl(L) ≤ D1-1   because of the path of 
length D1-1 to null

npl(R) ≥ D2-1   because every node on
right path is leftist

Leftist property at x violated! 10/25/2010 16

Right Path in a Leftist Tree is Short (#2)
Claim: If the right path has r nodes, then the tree has 

at least
2r -1 nodes.

Proof: (By induction)
Base case          : r=1 . Tree has at least 21-1 = 1 node
Inductive step  : assume true for r’< r .   Prove for tree with right 

path at least r .
1. Right subtree: right path of r-1 nodes

⇒ 2r-1 -1 right subtree nodes (by induction)
2. Left subtree:   also right path of length at least r-1 (by previous 
slide) ⇒ 2r-1 -1 left subtree nodes (by induction)

Total tree size: (2r-1 -1) + (2 r-1 -1) + 1 = 2 r -1
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Why do we have the leftist property?

Because it guarantees that:

• the right path is really short compared to 
the number of nodes in the tree

• A leftist tree of N nodes, has a right path of 
at most log (N+1)nodes

Idea – perform all work on the right path
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Merge two heaps (basic idea)

• Put the smaller root as the new root,

• Hang its left subtree on the left.

• Recursivelymerge its right subtree and the 
other tree.
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Merging Two Leftist Heaps
• merge(T1,T2) returns one leftist heap 

containing all elements of the two (distinct) 
leftist heaps T1 and T2

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1
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Merge Continued
a

L1 R’

R’ = Merge(R1, T2)

a

R’ L1

If npl(R’ ) > npl(L1)

runtime:
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Merge Example
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Sewing Up the Example
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Done?
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Finally…
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Merge Two Leftist Heaps
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Other Heap Operations

• insert ?

• deleteMin ?
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Operations on Leftist Heaps
• mergewith two trees of total size n: O(log n)

• insertwith heap size n: O(log n)
– pretend node is a size 1 leftist heap

– insert by merging original heap with one node heap

• deleteMinwith heap size n: O(log n)
– remove and return root

– merge left and right subtrees

merge

merge
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Leftist Heaps: Summary

Good

•

•

Bad

•

•
10/25/2010 28

Amortized Time

am·or·tized time:
Running time limit resulting from “writing off” expe nsive
runs of an algorithm over multiple cheap runs of the
algorithm, usually resulting in a lower overallrunning time
than indicated by the worst possible case.

If M operations take total O(M log N) time, 
amortized time per operation is O(log N)

Difference from average time:
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Skew Heaps
Problems with leftistheaps

– extra storage for npl

– extra complexity/logic to maintain and check npl

– right side is “often” heavy and requires a switch

Solution: skewheaps
– “blindly” adjusting version of leftist heaps

– merge always switches children when fixing right path

– amortized timefor: merge, insert, deleteMin = O(logn)

– however, worst case timefor all three = O(n)
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Merging Two SkewHeaps

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1

Only one step per iteration, with children always switched
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Example
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Skew Heap Code
void merge(heap1, heap2) {

case {

heap1 == NULL: return heap2;

heap2 == NULL: return heap1;

heap1.findMin() < heap2.findMin():

temp = heap1.right;

heap1.right = heap1.left;

heap1.left = merge(heap2, temp);

return heap1;

otherwise:

return merge(heap2, heap1);

}

}
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Runtime Analysis:
Worst-case and Amortized

• No worst case guarantee on right path length!

• All operations rely on merge

⇒ worst case complexity of all ops = 

• Amortized Analysis  (Chapter 11)

• Result: M merges take time M log n

⇒ amortized complexity of all ops = 
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Comparing Priority Queues
• Binary Heaps

• d-Heaps

• Leftist Heaps

• Skew Heaps

Student Activity


