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AVL Trees
(4.4 in Weiss)

CSE 373
Data Structures & Algorithms

Ruth Anderson
Autumn 2010
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Today’s Outline
• Announcements

– Assignment #2 due AT THE BEGINNING OF 
LECTURE, Fri, Oct 15, 2010.

• Today’s Topics: 
– Binary Search Trees (Weiss 4.1-4.3)
– AVL Trees (Weiss 4.4)
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The AVL Balance Condition
Left and right subtrees of every node
have equal heights differing by at most 1

Define: balance(x) = height(x.left) – height(x.right)

AVL property:  –1  ≤≤≤≤ balance(x) ≤≤≤≤ 1,   for every node x

• Ensures small depth
– Will prove this by showing that an AVL tree of height

h must have a lot of (i.e. Θ(2h)) nodes

• Easy to maintain
– Using single and double rotations
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The AVL Tree Data Structure
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Structural properties

1. Binary tree property 
(0,1, or 2 children)

2. Heights of left and right 
subtrees of every node
differ by at most 1

Result:

Worst case depth of any 
node is: O(logn)

Ordering property

– Same as for BST
15
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Is this an AVL Tree?
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NULLs have 
height -1
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Student Activity If not AVL, put a box around nodes where AVL property is violated.
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Circle One:
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Proving Shallowness Bound
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Let S(h) be the min # of nodes in an
AVL tree of height h

Claim: S(h) = S(h-1) + S(h-2) + 1

Solution of recurrence: S(h) = Θ(2h)
(like Fibonacci numbers)

AVL tree of height h=4
with the min # of nodes
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Testing the Balance Property
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NULLs have 
height -1

We need to be able to:

1.

2.

3.
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An AVL Tree
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AVL trees: find, insert

• AVL find : 
– same as BST find.

• AVL insert : 
– same as BST insert, except may need to “fix”

the AVL tree after inserting new value.
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AVL tree insert
Let x be the node where an imbalance occurs.

Four cases to consider.  The insertion is in the
1. left subtree of the left child of x.
2. rightsubtree of the left child of x.
3. left subtree of the right child of x.
4. rightsubtree of the right child of x.

Idea: Cases 1 & 4 are solved by a single rotation.

Cases 2 & 3 are solved by a doublerotation.

10/13/2010 12

Bad Case #1
Insert(6)

Insert(3)

Insert(1)
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Fix: Apply Single Rotation
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Single Rotation:   
1. Rotate between x and child

AVL Property violated at this node (x)
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Single rotation in general
a

Z
Y

b

Xh
h

h

h ≥≥≥≥ -1

a

ZY

b

Xh+1 h h

X < b < Y < a < Z

Height of tree before?   Height of tree after?  Effect on Ancestors?
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Single rotation example

21103

205

15

1

2 4

17

10/13/2010 16

21

10

3 20

5

15

1

2

4

17

Soln:
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Bad Case #3
Insert(1)

Insert(6)

Insert(3)
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Fix: Apply Double Rotation
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AVL Property violated at this node (x)

Double Rotation
1. Rotate between x’s child and grandchild
2. Rotate between x and x’s new child
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Double rotation in general
a

Z

b

W

c

X
Yh-1

h

h h -1

a

Z

b

W

c

X
Yh-1 hh h

h ≥≥≥≥ 0

W < b <X < c < Y < a < Z

Height of tree before?   Height of tree after?  Effect on Ancestors?
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Double rotation, step 1
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Double rotation, step 2
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Imbalance at node X

Single Rotation 

1. Rotate between x and child

Double Rotation

1. Rotate between x’s child and grandchild

2. Rotate between x and x’s new child
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Insert into an AVL tree: a b e c d

Student Activity Circle your final answer
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1. single rotation?

2. double rotation?

3. no rotation?

Inserting what integer values 
would cause the tree to need a:

Single and Double Rotations:

13

30

Student Activity



5

10/13/2010 25

Insertion into AVL tree
1. Find spot for new key

2. Hang new node there with this key

3. Search back up the path for imbalance

4. If there is an imbalance:
case #1: Perform single rotation and exit

case #2: Perform double rotation and exit

Both rotations keep the subtree height unchanged.
Hence only one rotation is sufficient!
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Easy Insert
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Hard Insert
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How to fix?

Unbalanced?
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Single Rotation
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Hard Insert 

Insert(18)
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Single Rotation (oops!)
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Double Rotation (Step #1)
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Double Rotation (Step #2)
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AVL Trees Revisited
• Balance condition:

For every node x,    -1 ≤ balance(x) ≤ 1
– Strong enough : Worst case depth is O(logn)

– Easy to maintain : one single or double rotation

• Guaranteed O(logn) running timefor
– Find ?

– Insert ?

– Delete ?

– buildTree ?
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AVL Trees Revisited
• What extra infodid we maintain in each node?

• Wherewere rotations performed?

• How did we locate this node?


