
1

10/13/2010 1

AVL Trees
(4.4 in Weiss)

CSE 373
Data Structures & Algorithms

Ruth Anderson
Autumn 2010

10/13/2010 2

Today’s Outline
• Announcements

– Assignment #2 due AT THE BEGINNING OF
LECTURE, Fri, Oct 15, 2010.

• Today’s Topics:
– Binary Search Trees (Weiss 4.1-4.3)
– AVL Trees (Weiss 4.4)

10/13/2010 3

The AVL Balance Condition
Left and right subtrees of every node
have equal heights differing by at most 1

Define: balance(x) = height(x.left) – height(x.right)

AVL property: –1 ≤≤≤≤ balance(x) ≤≤≤≤ 1, for every node x

• Ensures small depth
– Will prove this by showing that an AVL tree of height

h must have a lot of (i.e. Θ(2h)) nodes

• Easy to maintain
– Using single and double rotations

10/13/2010 44

The AVL Tree Data Structure

4

121062

115

8

14137 9

Structural properties

1. Binary tree property
(0,1, or 2 children)

2. Heights of left and right
subtrees of every node
differ by at most 1

Result:

Worst case depth of any
node is: O(logn)

Ordering property

– Same as for BST
15

10/13/2010 55

Is this an AVL Tree?

2092

155

10

30177

NULLs have
height -1

10/13/2010 66

111

84

6

3

1171

84

6

2

5

Student Activity If not AVL, put a box around nodes where AVL property is violated.

AVL

Not AVL

AVL

Not AVL

Circle One:

10 12

7

2

10/13/2010 7

Proving Shallowness Bound

121062

115

8

14137 9

15

Let S(h) be the min # of nodes in an
AVL tree of height h

Claim: S(h) = S(h-1) + S(h-2) + 1

Solution of recurrence: S(h) = Θ(2h)
(like Fibonacci numbers)

AVL tree of height h=4
with the min # of nodes

10/13/2010 8

Testing the Balance Property

2092

155

10

30177

NULLs have
height -1

We need to be able to:

1.

2.

3.

10/13/2010 9

An AVL Tree

20

92 15

5

10

30

177

0

0 0

011

2 2

3 10

3

data

height

children

10/13/2010 10

AVL trees: find, insert

• AVL find :
– same as BST find.

• AVL insert :
– same as BST insert, except may need to “fix”

the AVL tree after inserting new value.

10/13/2010 11

AVL tree insert
Let x be the node where an imbalance occurs.

Four cases to consider. The insertion is in the
1. left subtree of the left child of x.
2. rightsubtree of the left child of x.
3. left subtree of the right child of x.
4. rightsubtree of the right child of x.

Idea: Cases 1 & 4 are solved by a single rotation.

Cases 2 & 3 are solved by a doublerotation.

10/13/2010 12

Bad Case #1
Insert(6)

Insert(3)

Insert(1)

3

10/13/2010 13

Fix: Apply Single Rotation

3

1 6
00

1
6

3

1
0

1

2

Single Rotation:
1. Rotate between x and child

AVL Property violated at this node (x)

10/13/2010 14

Single rotation in general
a

Z
Y

b

Xh
h

h

h ≥≥≥≥ -1

a

ZY

b

Xh+1 h h

X < b < Y < a < Z

Height of tree before? Height of tree after? Effect on Ancestors?

10/13/2010 1515

Single rotation example

21103

205

15

1

2 4

17

10/13/2010 16

21

10

3 20

5

15

1

2

4

17

Soln:

10/13/2010 1717

Bad Case #3
Insert(1)

Insert(6)

Insert(3)

10/13/2010 18

Fix: Apply Double Rotation

3

1 6
00

1

3

6

1

0

1

2

6

3

1

0

1

2

AVL Property violated at this node (x)

Double Rotation
1. Rotate between x’s child and grandchild
2. Rotate between x and x’s new child

4

10/13/2010 19

Double rotation in general
a

Z

b

W

c

X
Yh-1

h

h h -1

a

Z

b

W

c

X
Yh-1 hh h

h ≥≥≥≥ 0

W < b <X < c < Y < a < Z

Height of tree before? Height of tree after? Effect on Ancestors?
10/13/2010 20

Double rotation, step 1

104

178

15

3 6

16

5

106

178

15

4

3

16

5

10/13/2010 21

Double rotation, step 2

106

178

15

4

3

16

5

10

6 17

8

15

4

3

16

5

10/13/2010 22

Imbalance at node X

Single Rotation

1. Rotate between x and child

Double Rotation

1. Rotate between x’s child and grandchild

2. Rotate between x and x’s new child

10/13/2010 23

Insert into an AVL tree: a b e c d

Student Activity Circle your final answer
10/13/2010 24

9

5

2

11

7

1. single rotation?

2. double rotation?

3. no rotation?

Inserting what integer values
would cause the tree to need a:

Single and Double Rotations:

13

30

Student Activity

5

10/13/2010 25

Insertion into AVL tree
1. Find spot for new key

2. Hang new node there with this key

3. Search back up the path for imbalance

4. If there is an imbalance:
case #1: Perform single rotation and exit

case #2: Perform double rotation and exit

Both rotations keep the subtree height unchanged.
Hence only one rotation is sufficient!

10/13/2010 26

Easy Insert

2092

155

10

3017

Insert(3)

12
0

0

100

1 2

3

0

Unbalanced?

10/13/2010 27

Hard Insert

2092

155

10

3017

Insert(33)

3

12
1

0

100

2 2

3

00

How to fix?

Unbalanced?

10/13/2010 28

Single Rotation

2092

155

10

30173

12

33

1

0

200

2 3

3

10

0

3092

205

10

333

15
1

0

110

2 2

3

00
1712

0

10/13/2010 29

Hard Insert

Insert(18)

2092

155

10

30173

12
1

0

100

2 2

3

00

How to fix?

Unbalanced?

10/13/2010 30

Single Rotation (oops!)

2092

155

10

30173

12
1

1

200

2 3

3

00

3092

205

10

3

15
1

1

020

2 3

3

0
1712

0

18
0

18
0

6

10/13/2010 31

Double Rotation (Step #1)

2092

155

10

30173

12
1

1

200

2 3

3

00

18
0

1792

155

10

203

12
1 200

2 3

3

10

30
0

18
0

10/13/2010 32

Double Rotation (Step #2)

1792

155

10

203

12
1 200

2 3

3

10

30
0

18
0

2092

175

10

303

15
1

0

110

2 2

3

00
12

0
18

10/13/2010 33

AVL Trees Revisited
• Balance condition:

For every node x, -1 ≤ balance(x) ≤ 1
– Strong enough : Worst case depth is O(logn)

– Easy to maintain : one single or double rotation

• Guaranteed O(logn) running timefor
– Find ?

– Insert ?

– Delete ?

– buildTree ?

10/13/2010 34

AVL Trees Revisited
• What extra infodid we maintain in each node?

• Wherewere rotations performed?

• How did we locate this node?

