Asymptotic Analysis

CSE 373
Data Structures & Algorithms
Ruth Anderson
Autumn 2010

Today's Outline

- Announcements
 - Assignment #1 due Thurs, Oct 7 at 11:45pm
- Asymptotic Analysis

Exercise

2 3 5 16 37 50 73 75 126

bool ArrayFind(int array[], int n, int key){
 //Insert your algorithm here

What algorithm would you choose to implement this code snippet?

}

Analyzing Code

Basic Java operations Constant time **Consecutive statements** Sum of times

Conditionals Larger branch plus test

Loops Sum of iterations

Function calls Cost of function body

Recursive functions Solve recurrence relation

Analyze your code!

Linear Search Analysis

Best Case:

Worst Case:

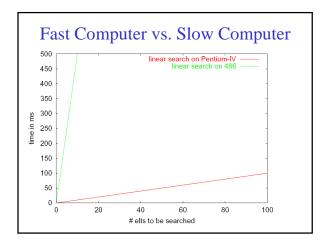
Binary Search Analysis

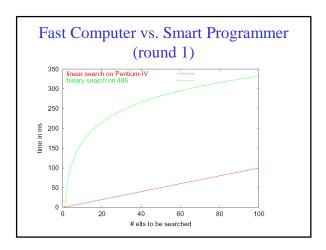
Solving Recurrence Relations

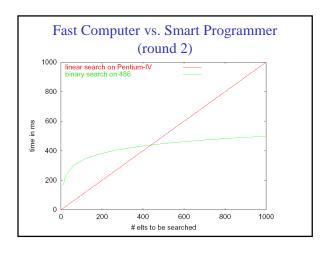
- 1. Determine the recurrence relation. What is the base case(s)?
- 2. "Expand" the original relation to find an equivalent general expression *in terms of the number of expansions*.
- 3. Find a closed-form expression by setting *the number of expansions* to a value which reduces the problem to a base case

Linear Search vs Binary Search

So ... which algorithm is better? What tradeoffs can you make?







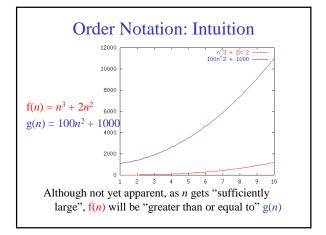
Asymptotic Analysis

- Asymptotic analysis looks at the *order* of the running time of the algorithm
 - A valuable tool when the input gets "large"
 - Ignores the *effects of different machines* or *different implementations* of the same algorithm
- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
 - Linear search is $T(n) = 3n + 3 \in \Theta(n)$
 - Binary search is $T(n) = 5 \log_2 n + 7 \in \Theta(\log n)$

Remember: the fastest algorithm has the slowest growing function for its runtime

Asymptotic Analysis

- Eliminate low order terms
 - $-4n+5 \Rightarrow$
 - $-\ 0.5\ n\ log\ n+2n+7 \Rightarrow$
 - $n^3 + 2^n + 3n \Longrightarrow$
- Eliminate coefficients
 - 4n ⇒
 - $-~0.5~n~log~n \Longrightarrow$
 - $-\ n\ log\ n^2 =>$



Definition of Order Notation

Big-O

• Upper bound: T(n) = O(f(n))

Exist constants c and n' such that

 $T(n) \le c f(n)$ for all $n \ge n$

Lower bound: $T(n) = \Omega(g(n))$ Omega

Exist constants c and n' such that

 $T(n) \geq c \ g(n) \ \text{ for all } n \geq n \text{'}$

• Tight bound: $T(n) = \Theta(f(n))$ Theta

When both hold:

 $T(n) \ = \ O(f(n))$

 $T(n) = \Omega(f(n))$

Order Notation: Definition

O(f(n)): a set or class of functions

 $g(n) \in O(f(n))$ iff there exist consts c and n_0 such that:

 $g(n) \le c f(n)$ for all $n \ge n_0$

Example: $g(n) = 1000n \text{ vs. } f(n) = n^2$

Is $g(n) \in O(f(n))$?

Pick: n0 = 1000, c = 1

Notation Notes

Note: Sometimes, you'll see the notation:

g(n) = O(f(n)).

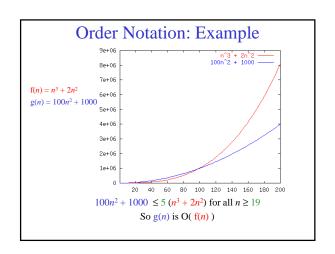
This is equivalent to:

g(n) is O(f(n)).

However: The notation

O(f(n)) = g(n) is meaningless!

(in other words big-O "equality" is not symmetric)



Big-O: Common Names

- constant: O(1)

 $\begin{array}{lll} - \ logarithmic: & O(\log n) & (log_k n, log \ n^2 \ is \ O(\log n)) \\ - \ log\text{-squared:} & O(\log^2 n) & (\ log^2 \ n) = (log \ n)(log n) \end{array}$

 $\begin{array}{ll} - \mbox{ linear:} & O(n) \\ - \mbox{ log-linear:} & O(n \mbox{ log } n) \\ - \mbox{ quadratic:} & O(n^2) \\ - \mbox{ cubic:} & O(n^3) \end{array}$

 $\begin{array}{lll} - \ polynomial: & O(n^k) & (k \ is \ a \ constant) \\ - \ exponential: & O(c^n) & (c \ is \ a \ constant > 1) \end{array}$

Meet the Family

- O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - o(f(n)) is the set of all functions asymptotically strictly less than f(n)
- $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to f(n)
 - $-\omega(f(n))$ is the set of all functions asymptotically strictly greater than f(n)
- Θ(f(n)) is the set of all functions asymptotically equal to f(n)

Meet the Family, Formally

- $g(n) \in O(f(n))$ iff There exist c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$
 - $g(n) \in o(f(n))$ iff There exists a n_0 such that g(n) < c f(n) for all c and $n \ge n_0$
- $g(n) \in \Omega(f(n))$ iff Equivalent to: $\lim_{n \to \infty} g(n)/f(n) = 0$ There exist c > 0 and n_0 such that $g(n) \ge c$ f(n) for all $n \ge n_0$
 - $g(n) \in \omega(f(n))$ iff There exists a n_0 such that g(n) > c f(n) for all c and $n \ge n_0$
- $g(n) \in \Theta(f(n))$ iff $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$ Equivalent to: $\lim_{n \to \infty} g(n)/f(n) = \infty$

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
0	≤
Ω	≥
Θ	=
0	<
ω	>

Pros and Cons of Asymptotic Analysis

Types of Analysis

Two orthogonal axes:

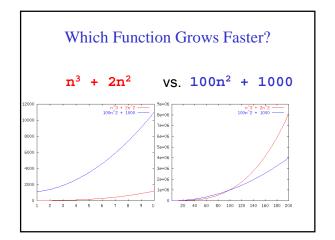
- bound flavor
 - upper bound (O, o)
 - lower bound $(\Omega,\,\omega)$
 - asymptotically tight (Θ)

– analysis case

- worst case (adversary)
- average case
- best case
- "amortized"

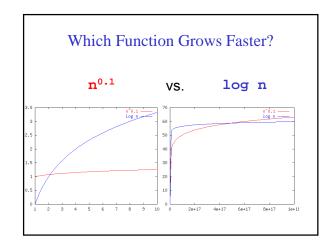
Which Function Grows Faster?

$$n^3 + 2n^2 \text{ VS.} 100n^2 + 1000$$



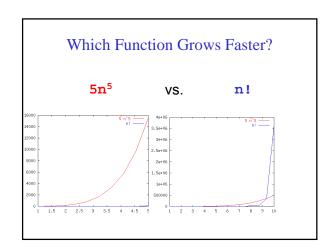
Which Function Grows Faster?

 $n^{0.1}$ vs. log n



Which Function Grows Faster?

 $5n^5$ vs. n!



Nested Loops

```
for i = 1 to n do
    for j = 1 to n do
    sum = sum + 1

for i = 1 to n do
    for j = 1 to n do
    sum = sum + 1
```

Nested Loops

```
for i = 1 to n do
  for j = 1 to n do
  if (cond) {
      do_stuff(sum)
  } else {
      for k = 1 to n*n
      sum += 1
```

$16n^3 \log_8(10n^2) + 100n^2 = O(n^3 \log(n))$

- Eliminate low order terms
- Eliminate constant coefficients

$16n^3 \log_8(10n^2) + 100n^2 = O(n^3 \log(n))$