
1

Graphs:
Traversals and Shortest Path

Algorithms

CSE 373

Data Structures and Algorithms

3/04/09 2

Graph Traversals
• Breadth-first search

– explore all adjacent nodes, then for each of those nodes explore all adjacent nodes
• Depth-first search

– explore first child node, then its first child node, etc. until goal node is found or
node has no children. Then backtrack, repeat with sibling.

• Both:
– Work for arbitrary (directed or undirected) graphs
– Must mark visited vertices so you do not go into an infinite loop!

• Either can be used to determine connectivity:
– Is there a path between two given vertices?
– Is the graph (weakly) connected?

• Which one:
– Uses a queue?
– Uses a stack?
– Always finds the shortest path(for unweighted graphs)?

3/04/09 3

The Shortest Path Problem

Given a graph G, edge costs ci,j, and vertices s and t in
G, find the shortest path from s to t.

For a path p = v0 v1 v2 … vk

– unweighted length of path p = k (a.k.a. length)

– weighted length of path p = ∑i=0..k-1 ci,i+1 (a.k.acost)

Path length equals path cost when ?

3/04/09 4

Single SourceShortest Paths (SSSP)

Given a graph G, edge costs ci,j, and vertex s, find the
shortest paths from s to all vertices in G.

3/04/09 5

All PairsShortest Paths (APSP)

Given a graph G and edge costs ci,j, find the shortest
paths between all pairsof vertices in G.

3/04/09 6

Variations of SSSP

– Weighted vs. unweighted

– Directed vs undirected

– Cyclic vs. acyclic

– Positive weights only vs. negative weights allowed

– Shortest path vs. longest path

– …

2

3/04/09 7

Applications

– Network routing

– Driving directions

– Cheap flight tickets

– Critical paths in project management
(see textbook)

– …

3/04/09 8

SSSP: Unweighted Version
Ideas?

3/04/09 9

void Graph::unweighted (Vertex s){

Queue q(NUM_VERTICES);

Vertex v, w;

q.enqueue(s);

s.dist = 0;

while (!q.isEmpty()){

v = q.dequeue();

for each w adjacent to v

if (w.dist == INFINITY){

w.dist = v.dist + 1;

w.path = v;

q.enqueue(w);

}

}

}

each edge examined
at most once – if adjacency
lists are used

each vertex enqueued
at most once

total running time: O()

3/04/09 10

WeightedSSSP:
The Quest For Food

Vending Machine in EE1

CSE 002
HUB

Delfino’s

Ben & Jerry’s
Araya’sCedars

ACM Lounge

Home

Schultzy’s

Parent’s Home

Café Allegro

10The Ave

U Village

350

375

40

25

35

15

25

15,356

35

285
75

70
365

350

Can we calculate shortest distance to all nodes from CSE 002?

3/04/09 11

Dijkstra, Edsger Wybe

Legendary figure in computer science; was a
professor at University of Texas.

Supported teaching introductory computer
courses without computers (pencil and paper
programming)

Supposedly wouldn’t (until very late in life)
read his e-mail; so, his staff had to print out
messages and put them in his box.

E.W. Dijkstra (1930-2002)

1972 Turing Award Winner,
Programming Languages, semaphores, and …

3/04/09 12

Dijkstra’s Algorithm: Idea

Adapt BFS to handle weighted
graphs

Two kinds of vertices:
– Finished or knownvertices

• Shortest distance has
been computed

– Unknownvertices
• Have tentative distance

3

3/04/09 13

Dijkstra’s Algorithm: Idea

At each step:
1) Pick closest unknown

vertex

2) Add it to knownvertices

3) Update distances

3/04/09 14

Dijkstra’s Algorithm: Pseudocode

Initialize the cost of each node to ∞

Initialize the cost of the source to 0

While there are unknownnodes left in the graph
Select an unknownnode b with the lowest cost
Mark b as known
For each node a adjacent to b

a’s cost = min(a’s old cost, b’s cost + cost of (b, a))

3/04/09 15

void Graph::dijkstra(Vertex s){
Vertex v,w;

Initialize s.dist = 0 and set dist of all other
vertices to infinity

while (there exist unknown vertices, find the one b
with the smallest distance)
b.known = true;

for each a adjacent to b
if (!a.known)

if (b.dist + Cost_ba < a.dist){
decrease(a.dist to= b.dist + Cost_ba);
a.path = b;

}
}

}

3/04/09 16

v3

v6

v1

v2 v4

v5

v0s

1

2

2

2
1

1 1

5 3

5

6

10

pathDistKnownV

v0

v6

v5

v4

v3

v2

v1

3/04/09 17

Dijkstra’s Alg: Implementation

Initialize the cost of each node to ∞
Initialize the cost of the source to 0

While there are unknown nodes left in the graph
Select the unknown node b with the lowest cost

Mark b as known

For each node a adjacent to b

a’s cost = min(a’s old cost, b’s cost + cost of (b, a))

What data structures should we use?

Running time?

3/04/09 18

Dijkstra’s Alg: Implementation

Initialize the cost of each node to ∞
Initialize the cost of the source to 0

While there are unknown nodes left in the graph
Select the unknown node b with the lowest cost

Mark b as known

For each node a adjacent to b

a’s cost = min(a’s old cost, b’s cost + cost of (b, a))

Running time?

4

3/04/09 19

Dijkstra’s Algorithm: a Greedy Algorithm
Greedy algorithms always make choices that

currently seem the best
– Short-sighted – no consideration of long-term or global

issues

– Locally optimal - does not always mean globally
optimal!!

3/04/09 20

Dijkstra’s Algorithm: Summary

• Classic algorithm for solving SSSP in weighted graphs
without negative weights

• A greedy algorithm (irrevocably makes decisions without
considering future consequences)

• Intuition for correctness:
– shortest path from source vertex to itself is 0
– cost of going to adjacent nodes is at most edge weights
– cheapest of these must be shortest path to that node
– update paths for new node and continue picking cheapest path

