
1

2/04/2009 1

Priority Queues

CSE 373
Data Structures & Algorithms

Ruth Anderson

2/04/2009 2

Today’s Outline

• Announcements
– Assignment #3 due Thurs, Feb 5th.

• Today’s Topics:
– Priority Queues

• Leftist Heaps
• Skew Heaps

2/04/2009 3

Other Heap Operations

• insert ?

• deleteMin ?

2/04/2009 4

Operations on Leftist Heaps
• mergewith two trees of total size n: O(log n)

• insertwith heap size n: O(log n)
– pretend node is a size 1 leftist heap

– insert by merging original heap with one node heap

• deleteMinwith heap size n: O(log n)
– remove and return root

– merge left and right subtrees

merge

merge

2/04/2009 5

Leftist Heaps: Summary

Good

•

•

Bad

•

•
2/04/2009 6

Amortized Time

am·or·tized time:
Running time limit resulting from “writing off” expe nsive
runs of an algorithm over multiple cheap runs of the
algorithm, usually resulting in a lower overallrunning time
than indicated by the worst possible case.

If M operations take total O(M log N) time,
amortized time per operation is O(log N)

Difference from average time:

2

2/04/2009 7

Skew Heaps
Problems with leftistheaps

– extra storage for npl

– extra complexity/logic to maintain and check npl

– right side is “often” heavy and requires a switch

Solution: skewheaps
– “blindly” adjusting version of leftist heaps

– merge always switches children when fixing right path

– amortized timefor: merge, insert, deleteMin = O(logn)

– however, worst case timefor all three = O(n)

2/04/2009 8

Merging Two SkewHeaps

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1

Only one step per iteration, with children always switched

2/04/2009 9

Example

1210

5

87

3

14

merge

7

3

14
1210

5

8

merge
7

3

1410

5

8

merge
12

7

3

14108

5

12
2/04/2009 10

Skew Heap Code
void merge(heap1, heap2) {

case {

heap1 == NULL: return heap2;

heap2 == NULL: return heap1;

heap1.findMin() < heap2.findMin():

temp = heap1.right;

heap1.right = heap1.left;

heap1.left = merge(heap2, temp);

return heap1;

otherwise:

return merge(heap2, heap1);

}

}

2/04/2009 11

Runtime Analysis:
Worst-case and Amortized

• No worst case guarantee on right path length!

• All operations rely on merge

⇒ worst case complexity of all ops =

• Amortized Analysis (Chapter 11)

• Result: M merges take time M log n

⇒ amortized complexity of all ops =

2/04/2009 12

Comparing Priority Queues
• Binary Heaps

• d-Heaps

• Leftist Heaps

• Skew Heaps

Student Activity

