

Today's Outline

- Announcements
- Assignment \#1 due Thurs, Jan 15 at 11:45pm
- Midterm Dates:
- Midterm \#1: Friday, Jan 30 ${ }^{\text {th }}$
- Midterm \#2: Friday, February 27th
- Asymptotic Analysis

Fast Computer vs. Slow Computer

Fast Computer vs. Smart Programmer
(round 1)

5

Fast Computer vs. Smart Programmer (round 2)

Asymptotic Analysis

- Asymptotic analysis looks at the order of the running time of the algorithm
- A valuable tool when the input gets "large"
- Ignores the effects of different machines or different implementations of the same algorithm
- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
- Linear search is $\mathrm{T}(n)=3 n+2 \in \Theta(n)$
- Binary search is $\mathrm{T}(n)=4 \log _{2} n+4 \in \Theta(\log \boldsymbol{n})$

Remember: the fastest algorithm has the slowest growing function for its runtime

Asymptotic Analysis

- Eliminate low order terms
$-4 \mathrm{n}+5 \Rightarrow$
$-0.5 \mathrm{n} \log \mathrm{n}+2 \mathrm{n}+7 \Rightarrow$
$-\mathrm{n}^{3}+2^{\mathrm{n}}+3 \mathrm{n} \Rightarrow$
- Eliminate coefficients
$-4 n \Rightarrow$
$-0.5 \mathrm{n} \log \mathrm{n} \Rightarrow$
$-\mathrm{n} \log \mathrm{n}^{2}=>$

Definition of Order Notation

- Upper bound: $T(n)=O(f(n)) \quad$ Big-O

Exist constants c and n_{0} such that

$$
T(n) \leq c f(n) \quad \text { for all } n \geq n_{0}
$$

- Lower bound: $T(n)=\Omega(g(n)) \quad$ Omega

Exist constants c and n_{0} such that

$$
T(n) \geq c g(n) \text { for all } n \geq n_{0}
$$

- Tight bound: $T(n)=\Theta(f(n)) \quad$ Theta When both hold:
$T(n)=O(f(n))$
$T(n)=\Omega(f(n))$
1/12/09

Order Notation: Definition

$\mathbf{O}(\mathbf{f}(\boldsymbol{n}))$: a set or class of functions
$\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ iff there exist constants c and n_{0} such that:
$\mathrm{g}(n) \leq c \mathrm{f}(n)$ for all $n \geq n_{0}$
Example: $\mathrm{g}(n)=1000 n$ vs. $\mathrm{f}(n)=n^{2}$
Is $\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$?
Pick: $\mathrm{n}_{0}=1000, \mathrm{c}=1$

1/12/09
12/09
11

Notation Notes

Note: Sometimes, you'll see the notation:

$$
\mathrm{g}(n)=\mathrm{O}(\mathrm{f}(n))
$$

This is equivalent to:

$$
\mathrm{g}(n) \text { is } \mathrm{O}(\mathrm{f}(n))
$$

However: The notation

$$
\mathrm{O}(\mathrm{f}(n))=\mathrm{g}(n) \quad \text { is meaningless! }
$$

(in other words big-O "equality" is not symmetric)

1/12/09 12

Meet the Family

- $\mathrm{O}(\mathrm{f}(n))$ is the set of all functions asymptotically less than or equal to $\mathrm{f}(n)$
- o(f(n)) is the set of all functions asymptotically strictly less than $\mathrm{f}(n)$
- $\Omega(\mathrm{f}(n))$ is the set of all functions asymptotically greater than or equal to $\mathrm{f}(n)$
$-\omega(\mathrm{f}(n))$ is the set of all functions asymptotically strictly greater than $\mathrm{f}(n)$
- $\Theta(\mathrm{f}(n))$ is the set of all functions asymptotically equal to $\mathrm{f}(n)$

1/12/09

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
O	\leq
Ω	\geq
Θ	$<$
o	$>$
ω	

1/12/09
17

Big-O: Common Names

Meet the Family, Formally

- $\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ iff

There exist c and n_{0} such that $\mathrm{g}(n) \leq c \mathrm{f}(n)$ for all $n \geq n_{0}$

- $\mathrm{g}(n) \in \mathrm{o}(\mathrm{f}(n))$ iff

There exists a n_{0} such that $\mathrm{g}(n)<c \mathrm{f}(n)$ for all c and $n \geq n_{0}$
Equivalent to: $\lim _{n \rightarrow \infty} \mathrm{~g}(n) / \mathrm{f}(n)=0$

- $\mathrm{g}(n) \in \Omega(\mathrm{f}(n))$ iff

There exist $c>0$ and n_{0} such that $\mathrm{g}(n) \geq c \mathrm{f}(n)$ for all $n \geq n_{0}$ $-\mathrm{g}(n) \in \omega(\mathrm{f}(n))$ iff
There exists a n_{0} such that $\mathrm{g}(n)>c \mathrm{f}(n)$ for all c and $n \geq n_{0}$
Equivalent to: $\lim _{n \rightarrow \infty} \mathrm{~g}(n) / \mathrm{f}(n)=\infty$

- $\mathrm{g}(n) \in \Theta(\mathrm{f}(n))$ iff
$\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ and $\mathrm{g}(n) \in \Omega(\mathrm{f}(n))$
1/12/09

Types of Analysis

Two orthogonal axes:

- bound flavor
- upper bound (O, o)
- lower bound (Ω, ω)
- asymptotically tight (Θ)
- analysis case
- worst case (adversary)
- average case
- best case
- "amortized"

Arithmetic Sequences

$\mathrm{N}=\{0,1,2, \ldots\}=$ natural numbers
$[0,1,2, \ldots]$ is an infinite arithmetic sequence
$[a, a+d, a+2 d, a+3 d, \ldots]$ is a general infinite arithmetic sequence.
There is a constant difference between terms.

$$
1+2+3+\ldots+N=\sum_{i=1}^{N} i=\frac{N(N+1)}{2}
$$

1/12/09
21

Which Function Grows Faster?
$n^{3}+2 n^{2}$ vs. $100 n^{2}+1000$

1/12/09
23

Algorithm Analysis Examples

- Consider the following program segment:
$\mathrm{x}:=0$;
for $i=1$ to N do
for $j=1$ to i do
$\mathrm{x}:=\mathrm{x}+1$;
- What is the value of x at the end?
- Total number of times x is incremented is executed $=$

$$
1+2+3+\ldots+N=\sum_{i=1}^{N} i=\frac{N(N+1)}{2}
$$

- Congratulations - You've just analyzed your first program!
- Running time of the program is proportional to $\mathrm{N}(\mathrm{N}+1) / 2$ for all N
- Big-O ??

1/12/09

Which Function Grows Faster?
$n^{0.1}$
vs. $\log n$

Which Function Grows Faster?
$5 n^{5}$
VS.
n! 27

Nested Loops

```
for i = 1 to n do
    for j = 1 to n do
        sum = sum + 1
    for i = 1 to n do
    for j = 1 to n do
        sum = sum + 1
```

Nested Loops
for $i=1$ to n do
for $j=1$ to n do
if (cond) \{
do_stuff(sum)
\} else \{
for $k=1$ to $n * n$
sum += 1
$16 n^{3} \log _{8}\left(10 n^{2}\right)+100 n^{2}=O\left(n^{3} \log (n)\right)$

- Eliminate low order terms
- Eliminate constant coefficients

$$
\Rightarrow n^{3} \log _{8}(2) \log (n)
$$

 \(16 n^{3} \log _{8}\left(10 n^{2}\right)+100 n^{2}=O\left(n^{3} \log (n)\right)\)
 - Eliminate low $16 n^{3} \log _{8}\left(10 n^{2}\right)+100 n^{2}$ order terms $\quad \Rightarrow 16 n^{3} \log _{8}\left(10 n^{2}\right)$
- Eliminate $\quad \Rightarrow n^{3} \log _{8}\left(10 n^{2}\right)$ constant $\quad \Rightarrow n^{3}\left[\log _{8}(10)+\log _{8}\left(n^{2}\right)\right]$ coefficients $\quad \Rightarrow n^{3} \log _{8}(10)+n^{3} \log _{8}\left(n^{2}\right)$ $\Rightarrow n^{3} \log _{8}\left(n^{2}\right)$
$\Rightarrow n^{3} 2 \log _{8}(n)$

$$
\Rightarrow n^{3} \log _{8}(n)
$$

$$
\Rightarrow n^{3} \log (n)
$$

32

