Asymptotic Analysis II CSE 373 Data Structures & Algorithms

Ruth Anderson Winter 2009

Asymptotic Analysis

- Asymptotic analysis looks at the *order* of the running time of the algorithm
 - A valuable tool when the input gets "large"
 - Ignores the *effects of different machines* or *different implementations* of the same algorithm
- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
 - Linear search is $T(n) = 3n + 2 \in \Theta(n)$
 - Binary search is $T(n) = 4 \log_2 n + 4 \in \Theta(\log n)$

Remember: the fastest algorithm has the slowest growing function for its runtime

1/12/09

Asymptotic Analysis

- · Eliminate low order terms
 - $-4n+5 \Longrightarrow$
 - $-0.5 \text{ n log n} + 2\text{n} + 7 \Rightarrow$
 - $-n^3+2^n+3n \Rightarrow$
- Eliminate coefficients
 - 4n ⇒
 - 0.5 n log n \Rightarrow
 - $n log n^2 =>$

1/12/09

Although not yet apparent, as n gets "sufficiently large", f(n) will be "greater than or equal to" g(n)

Definition of Order Notation

• Upper bound: T(n) = O(f(n)) Big-O

Exist constants c and n_0 such that

 $T(n) \le c f(n)$ for all $n \ge n_0$

• Lower bound: $T(n) = \Omega(g(n))$ Omega

Exist constants c and n_0 such that

 $T(n) \ge c \ g(n)$ for all $n \ge n_0$

• Tight bound: $T(n) = \Theta(f(n))$ Theta

When both hold:

T(n) = O(f(n))

 $T(n) = \Omega(f(n))$

1/12/09

Order Notation: Definition

O(f(n)): a set or class of functions

 $g(n) \in O(f(n))$ iff there exist constants c and n_0 such that:

 $g(n) \le c f(n)$ for all $n \ge n_0$

Example: $g(n) = 1000n \text{ vs. } f(n) = n^2$

Is $g(n) \in O(f(n))$?

Pick: $n_0 = 1000$, c = 1

1/12/09

11

Notation Notes

Note: Sometimes, you'll see the notation:

g(n) = O(f(n)).

This is equivalent to:

g(n) is O(f(n)).

However: The notation

O(f(n)) = g(n) is meaningless!

(in other words big-O "equality" is not symmetric)

09 12

Meet the Family

- O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - o(f(n)) is the set of all functions asymptotically strictly less than f(n)
- $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to f(n)
 - $-\omega(f(n))$ is the set of all functions asymptotically strictly greater than f(n)
- Θ(f(n)) is the set of all functions asymptotically equal to f(n)

1/12/09 15

Meet the Family, Formally

- $g(n) \in O(f(n))$ iff There exist c and n_0 such that $g(n) \le c$ f(n) for all $n \ge n_0$
 - g(n) ∈ o(f(n)) iff There exists a n_0 such that g(n) < c f(n) for all c and $n \ge n_0$ Equivalent to: $\lim_{n\to\infty} g(n)/f(n) = 0$
- $g(n) \in \Omega(f(n))$ iff

There exist c>0 and n_0 such that $g(n) \ge c$ f(n) for all $n \ge n_0$

- $g(n) \in \omega(f(n))$ iff There exists a n_0 suc

There exists a n_0 such that g(n) > c f(n) for all c and $n \ge n_0$

Equivalent to: $\lim_{n\to\infty} g(n)/f(n) = \infty$

• $g(n) \in \Theta(f(n))$ iff $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$

1/12/09

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
0	≤
Ω	≥
Θ	=
0	<
ω	>

1/12/09

17

Pros and Cons of Asymptotic Analysis

1/12/09 18

Types of Analysis

Two orthogonal axes:

bound flavor

- upper bound (O, o)
- lower bound (Ω, ω)
- asymptotically tight (Θ)

- analysis case

- · worst case (adversary)
- · average case
- best case"amortized"

1/12/09

Algorithm Analysis Examples

• Consider the following program segment:

• What is the value of x at the end?

1/12/09

20

Arithmetic Sequences

$$\begin{split} N &= \{0,\,1,\,2,\,\dots\,\} &= \text{natural numbers} \\ [0,\,1,\,2,\,\dots\,] &\text{is an infinite arithmetic sequence} \\ [a,\,a+d,\,a+2d,\,a+3d,\,\dots\,] &\text{is a general infinite arithmetic sequence.} \end{split}$$

There is a constant difference between terms.

$$1 + 2 + 3 + ... + N = \sum_{i=1}^{N} i = \frac{N(N+1)}{2}$$

1/12/09

21

19

Analyzing the Loop

 Total number of times x is incremented is executed =

$$1+2+3+...+N=\sum_{i=1}^{N}i=\frac{N(N+1)}{2}$$

- Congratulations You've just analyzed your first program!
 - Running time of the program is proportional to $N(N\!+\!1)/2$ for all N
 - Big-O ??

1/12/09

22

Which Function Grows Faster?

$$n^3 + 2n^2 \text{ VS.} 100n^2 + 1000$$

1/12/09

23

Which Function Grows Faster? $n^3 + 2n^2 \qquad \text{Vs. } 100n^2 + 1000$

Which Function Grows Faster? n^{0.1} vs. log n

Nested Loops for i = 1 to n do for j = 1 to n do sum = sum + 1 for i = 1 to n do for j = 1 to n do sum = sum + 1

```
Nested Loops

for i = 1 to n do
    for j = 1 to n do
    if (cond) {
        do_stuff(sum)
    } else {
        for k = 1 to n*n
            sum += 1
```

$16n^3 \log_8(10n^2) + 100n^2 = O(n^3 \log(n))$

31

- Eliminate low order terms
- Eliminate constant coefficients

1/12/09

$16n^3 \log_8(10n^2) + 100n^2 = O(n^3 \log(n))$

constant $\Rightarrow n^3 \left[\log_8(10) + \log_8(n^2) \right]$ $\Rightarrow n^3 \log_8(10) + n^3 \log_8(n^2)$

 $\Rightarrow n^{3} \log_{8}(n^{2})$ $\Rightarrow n^{3} 2 \log_{8}(n)$ $\Rightarrow n^{3} \log_{8}(n)$ $\Rightarrow n^{3} \log_{8}(2) \log(n)$ $\Rightarrow n^{3} \log(n)$

 $\Rightarrow n \log(n)$ 32