
1

Asymptotic Analysis

CSE 373
Data Structures & Algorithms

Ruth Anderson
Winter 2009

1/9/09 2

Today’s Outline
• Announcements

– Assignment #1 due Thurs, Jan 15 at 11:45pm

• Math Review
– Exponents and Logs

• Asymptotic Analysis

1/9/09 3

Comparing Two Algorithms

1/9/09 4

What we want
• Rough Estimate

• Ignores Details

1/9/09 5

Big-O Analysis
• Ignores “details”

1/9/09 6

Analysis of Algorithms

• Efficiency measure
– how long the program runs time complexity

– how much memory it uses space complexity
• For today, we’ll focus on time complexity only

• Why analyze at all?

2

1/9/09 7

Asymptotic Analysis

• Complexity as a function of input size n
T(n) = 4n + 5

T(n) = 0.5 n log n - 2n + 7

T(n) = 2n + n3 + 3n

• What happens as n grows?

1/9/09 8

Why Asymptotic Analysis?
• Most algorithms are fast for small n

– Time difference too small to be noticeable

– External things dominate (OS, disk I/O, …)

• BUT n is often large in practice
– Databases, internet, graphics, …

• Time difference really shows up as n grows!

1/9/09 9

Big-O: Common Names

– constant: O(1)

– logarithmic: O(log n)

– linear: O(n)

– quadratic: O(n2)

– cubic: O(n3)

– polynomial: O(nk) (k is a constant)

– exponential: O(cn) (c is a constant > 1)

1/9/09 10

Exercise

bool ArrayFind(int array[], int n, int key){

// Insert your algorithm here

}

2 3 5 16 37 50 73 75 126

What algorithm would you choose
to implement this code snippet?

1/9/09 11

Analyzing Code

Basic Java operations
Consecutive statements

Conditionals

Loops
Function calls

Recursive functions

Constant time

Sum of times

Larger branch plus test

Sum of iterations

Cost of function body

Solve recurrence relation

Analyze your code!

1/9/09 12

Linear Search Analysis
bool LinearArrayFind(int array[],

int n,

int key) {

for(int i = 0; i < n; i++) {
if(array[i] == key)

// Found it!

return true;

}

return false;

}

Best Case:

Worst Case:

3

1/9/09 13

Binary Search Analysis
bool BinArrayFind(int array[], int low,

int high, int key) {

// The subarray is empty
if(low > high) return false;

// Search this subarray recursively
int mid = (high + low) / 2;

if(key == array[mid]) {

return true;

} else if(key < array[mid]) {

return BinArrayFind(array, low,

mid-1, key);

} else {

return BinArrayFind(array, mid+1,

high, key);

}

Best case:

Worst case:

1/9/09 14

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case(s)?

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base case

