
CSE 373
Data Structures & Algorithms

Lectures 24

Final Review

12/07/2009 CSE 373 Fall 2009 -- Dan Suciu 1

Third Midterm (a.k.a. Final)

• Friday, 12:30 – 1:30, here in class

• Logistics: Closed Book

• Comprehensive
– Everything up to and including Network Flow

– Not the material we will cover this Wednesday

12/07/2009 2CSE 373 Fall 2009 -- Dan Suciu

• Each internal still has (up to) M-1 keys:

• Order property:
– subtree between two keys x and y

contain leaves with values v
such that x v < y

– Note the “”

• Leaf nodes contain
up to L sorted keys.

B+ Trees
(book calls these B-trees)

3 7 12 21

x<3 3x<7 7x<12 12x<21 21x

M = 7

12/07/2009 3CSE 373 Fall 2009 -- Dan Suciu

B+ Tree Structure Properties
Root (special case)

– has between 2 and M children (or root could be a leaf)

Internal nodes
– store up to M-1 keys
– have between M/2 and M children

Leaf nodes
– where data is stored
– all at the same depth
– contain between L/2 and L data items

Leaves are at least ½
full

Nodes are at least ½
full

12/07/2009 4CSE 373 Fall 2009 -- Dan Suciu

B+ Tree: Example
B+ Tree with M = 4 (# pointers in internal node)

and L = 5 (# data items in leaf)

1, AB..

4, XY..

6
8
9
10

12
14
16
17

20
22

27
28
32

34
38
39
41

44
47
49

50
60
70

12 44

6 20 27 34 50

All leaves
at the same
depth

Data objects…
which I’ll ignore
in slides

2, GH..

19

24

Definition for later: “neighbor” is the next sibling to the left or right.12/07/2009 5CSE 373 Fall 2009 -- Dan Suciu

6

B+ trees vs. AVL trees
Suppose again we have n = 230 ≈ 109 items:

• Depth of AVL Tree

• Depth of B+ Tree with M = 256, L = 256

So let’s see how we do this…

43

Log_128 10^9 = 4.3

12/07/2009 6CSE 373 Fall 2009 -- Dan Suciu

Thinking about B+ Trees
• B+ Tree insertion can cause (expensive)

splitting and propagation up the tree
• B+ Tree deletion can cause (cheap) adoption

or (expensive) merging and propagation up
the tree

• Split/merge/propagation is rare if M and L
are large (Why?)

• Pick branching factor M and data items/leaf
L such that each node takes one full
page/block of memory/disk.

12/07/2009 7CSE 373 Fall 2009 -- Dan Suciu
Only 1/L inserts cause split, only 1/M of these go up!

Hash Tables

• Find, insert, delete:
constant time on average!

• A hash table is an array
of some fixed size.

• General idea:

key space (e.g., integers, strings)

0

…

TableSize –1

hash function:
index = h(K)

hash table

12/07/2009 8CSE 373 Fall 2009 -- Dan Suciu

Separate Chaining

Separate chaining: All
keys that map to
the same hash
value are kept in a
list (or “bucket”).

0 10
1
2 42, 12, 22
3
4
5
6
7 107
8
9

Insert:
10
22
107
12
42

Thoughts about this?

Our goal is to keep it such that
a simple list is good enough

12/07/2009 9CSE 373 Fall 2009 -- Dan Suciu

Open Addressing

0 8
1 109
2 10
3
4
5
6
7
8 38
9 19

Insert:
38
19
8
109
10Try h(K)

If full, try h(K)+1.
If full, try h(K)+2.
If full, try h(K)+3.
Etc…
What is f(i)?

12/07/2009 10CSE 373 Fall 2009 -- Dan Suciu

Linear Probing

f(i) = i

• Probe sequence:
0th probe = h(K) % TableSize

1th probe = (h(K) + 1) % TableSize

2th probe = (h(K) + 2) % TableSize

. . .

ith probe = (h(K) + i) % TableSize

12/07/2009 11CSE 373 Fall 2009 -- Dan Suciu

no collision

no collision
collision in
small cluster

collision in
large cluster

Linear Probing – Clustering

[R. Sedgewick]12/07/2009 12CSE 373 Fall 2009 -- Dan Suciu

Quadratic Probing

f(i) = i2

• Probe sequence:
0th probe = h(K) % TableSize
1th probe = (h(K) + 1) % TableSize
2th probe = (h(K) + 4) % TableSize
3th probe = (h(K) + 9) % TableSize
. . .
ith probe = (h(K) + i2) % TableSize

Less likely
to encounter
Primary
Clustering

12/07/2009 13CSE 373 Fall 2009 -- Dan Suciu

Double Hashing
Idea: given two different (good) hash functions h(K)

and g(K), it is unlikely two keys to collide with
both.

So…let’s try probing with a second hash function:

f(i) = i * g(K)

• Probe sequence:
0th probe = h(K) % TableSize
1th probe = (h(K) + g(K)) % TableSize
2th probe = (h(K) + 2*g(K)) % TableSize
3th probe = (h(K) + 3*g(K)) % TableSize
. . .
ith probe = (h(K) + i*g(K)) % TableSize

12/07/2009 14CSE 373 Fall 2009 -- Dan Suciu

Deletion in Separate Chaining

How do we delete an element with separate
chaining?

Easy, just delete the item from the bucket

12/07/2009 15CSE 373 Fall 2009 -- Dan Suciu

Deletion in Open Addressing

Can we do something
similar for open
addressing?

• Delete
• Find
• Insert

0

1

2

3

4

5

6

16

X

59

76

h(k) = k % 7
Linear probing

Delete(23)
Find(59)
Insert(30)

Need to leave
a marker of a
deletion

12/07/2009 16CSE 373 Fall 2009 -- Dan Suciu

Idea: When the table gets too full, create a
bigger table (usually 2x as large) and
hash all the items from the original
table into the new table.

• When to rehash?
– Separate chaining: full (= 1)
– Open addressing: half full (= 0.5)
– When an insertion fails
– Some other threshold

• Cost of a single rehashing?

Rehashing

O(N)

12/07/2009 17CSE 373 Fall 2009 -- Dan Suciu

Why Sort?
• Allows binary search of an N-element array

in O(log N) time
• Allows O(1) time access to kth largest

element in the array for any k
• People tend to like their output sorted

• Sorting algorithms are a frequently used
and heavily studied family of algorithms in
computer science

12/07/2009 18CSE 373 Fall 2009 -- Dan Suciu

Stability
A sorting algorithm is stable if:

– Items in the input with the same value end up in
the same order as when they began.
Input

Adams 1
Black 2
Brown 4
Jackson 2
Jones 4
Smith 1
Thompson 4
Washington 2
White 3
Wilson 3

Unstable sort
Adams 1
Smith 1
Washington 2
Jackson 2
Black 2
White 3
Wilson 3
Thompson 4
Brown 4
Jones 4

Stable Sort
Adams 1
Smith 1
Black 2
Jackson 2
Washington 2
White 3
Wilson 3
Brown 4
Jones 4
Thompson 4 [Sedgewick]12/07/2009 19CSE 373 Fall 2009 -- Dan Suciu

Sorting: The Big Picture

Given n comparable elements in an array, sort
them in an increasing order.

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Bubble sort
…

Heap sort
Binary tree sort
Merge sort
Quick sort (avg case)
…

Bucket sort
Radix sort

External
sorting

12/07/2009 20CSE 373 Fall 2009 -- Dan Suciu

Selection Sort: Idea

1. Find the smallest element, put it 1st

2. Find the next smallest element, put it 2nd

3. Find the next smallest, put it 3rd

4. And so on …

12/07/2009 21CSE 373 Fall 2009 -- Dan Suciu

Bubble Sort Idea

• Take a pass through the array
– If a pair of neighboring elements are out of sort

order, swap them.

• Take passes until no swaps are needed at any
point in the pass.

12/07/2009 22CSE 373 Fall 2009 -- Dan Suciu

Insertion Sort: Idea

1. One element is by definition sorted
2. Sort first 2 elements.
3. Insert 3rd element in order.

• (First 3 elements are now sorted.)
4. Insert 4th element in order

• (First 4 elements are now sorted.)
5. And so on…

12/07/2009 23CSE 373 Fall 2009 -- Dan Suciu

Heap Sort: Sort with a Binary Heap

Runtime:

21664

3117

54

2, 4, 6, 16, 17, 31, 54

O(n log n)
Use a max-heap, do it in-place

12/07/2009 24CSE 373 Fall 2009 -- Dan Suciu

“Divide and Conquer”

• Two divide and conquer sorting methods:

• Idea 1: Divide array into two halves,
recursively sort left and right halves, then
merge two halves known as Mergesort

• Idea 2 : Partition array into small items and
large items, then recursively sort the two
smaller portions known as Quicksort

12/07/2009 25CSE 373 Fall 2009 -- Dan Suciu

Mergesort

• Divide it in two at the midpoint

• Conquer each side in turn
(by recursively sorting)

• Merge two halves together

8 2 9 4 5 3 1 6

12/07/2009 26CSE 373 Fall 2009 -- Dan Suciu

Mergesort Example

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

2 8

2 4 8 9

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

1 3 5 6

12/07/2009 27CSE 373 Fall 2009 -- Dan Suciu

Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Copy if Needed

12/07/2009 28CSE 373 Fall 2009 -- Dan Suciu

Quicksort

• Quicksort uses a divide and conquer strategy,
but does not require the O(N) extra space that
MergeSort does

– Partition array into left and right sub-arrays
• the elements in left sub-array are all less than pivot
• elements in right sub-array are all greater than pivot

– Recursively sort left and right sub-arrays

– Concatenate left and right sub-arrays in O(1) time

12/07/2009 29CSE 373 Fall 2009 -- Dan Suciu

Quicksort Example

2 4 3 1 8 9 6

2 1 94 6

2

1 2

1 2 3 4

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

5

83

1

6 8 9

12/07/2009 30CSE 373 Fall 2009 -- Dan Suciu

So Which Is Best?

• It’s a trick question, a naïve question

• Myth: “Quicksort is the best in-memory
sorting algorithm.”

• Mergesort and Quicksort make different
tradeoffs regarding the cost of comparison
and the cost of a swap

• Mergesort is also the basis for external sorting
algorithms (large N sorting)

12/07/2009 31CSE 373 Fall 2009 -- Dan Suciu

Permutations

• How many possible orderings are there?

• Example: a, b, c

a < b < c
a < c < b

b < a < c
b < c < a

c < a < b
c < b < a

12/07/2009 32CSE 373 Fall 2009 -- Dan Suciu

Decision Tree

a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a

a < b < c
a < c < b
c < a < b

b < a < c
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < a < c
b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

The leaves contain all the possible orderings of a, b, c

a ? b

12/07/2009 33CSE 373 Fall 2009 -- Dan Suciu

Lower bound on Height

• The decision tree has how many leaves:

• A binary tree with L leaves has height at least:

• So the decision tree has height:

!NL

Lh 2log

)!(log2 Nh

12/07/2009 34CSE 373 Fall 2009 -- Dan Suciu

log(N!)

)log(
2log

2
log

2
)2log(log

2

2
log

2

2
log)2log()1log(log

1log2log)2log()1log(log
)1()2()2()1(log)!log(

NN

NNNNN

NN

NNNN

NNN
NNNN

select just the
first N/2 terms

each of the selected
terms is logN/2

12/07/2009 35CSE 373 Fall 2009 -- Dan Suciu

(N log N)

• No matter how clever you are about which
comparisons you perform, your sorting
algorithm with always be (N log N)

• Your worst case will be at least N log N

• Proving this saves us the trouble of trying to
do better than this, because we cannot

• Now that’s some Computer Science

12/07/2009 36CSE 373 Fall 2009 -- Dan Suciu

Doing Better

• So how can we do better?
– Need to dodge one of the proof’s assumptions

• What’s our proof based in?
– Comparisons

• Can we sort without doing comparisons?

12/07/2009 37CSE 373 Fall 2009 -- Dan Suciu

BucketSort (aka BinSort)
If all values are known to be between 1 and K,
create an array count of size K,
increment counts while traversing the input,
and finally output the result.

Example K=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

count array
1 3
2 1
3 2
4 2
5 3

Running time to sort n items?

1,1,1,2,3,3,4,4,5,5,5

N + K12/07/2009 38CSE 373 Fall 2009 -- Dan Suciu

RadixSort

• Radix = “The base of a number system”
– We’ll use 10 for convenience
– Use a larger number in any implementation
– ASCII Strings, for example, might use 128

• Idea:
– BucketSort on one digit at a time

• Requires stable sort!

– After sort k, the last k digits are sorted
– Set number of buckets: B = radix.

12/07/2009 39CSE 373 Fall 2009 -- Dan Suciu

RadixSort
• Input:126, 328, 636, 341, 416, 131, 328

0 1 2 3 4 5 6 7 8 9

BucketSort on lsd:

0 1 2 3 4 5 6 7 8 9

BucketSort on next-higher digit:

0 1 2 3 4 5 6 7 8 9

BucketSort on msd:

126
636
416

328
328

341
131

341131
636

126
328
328

416

416126
131

328
328
341

636

Output: 126, 131, 328, 328, 341, 416, 636
12/07/2009 40CSE 373 Fall 2009 -- Dan Suciu

Summary of sorting

O(N2) average, worst case:

– Selection Sort, Bubblesort, Insertion Sort
O(N log N) average case:

– Heapsort: In-place, not stable.
– Mergesort: O(N) extra space, stable, massive data.
– Quicksort: claimed fastest in practice, but O(N2) worst case.

Recursion/stack requirement. Not stable.
(N log N) worst and average case:

– Any comparison-based sorting algorithm
O(N)

– Radix Sort: fast and stable. Not comparison based. Not in-
place. Poor memory locality can undercut performance.

12/07/2009 41CSE 373 Fall 2009 -- Dan Suciu

Disjoint Set ADT

• Data: set of pairwise disjoint sets.

• Required operations
– Union – merge two sets to create their union

– Find – determine which set an item appears in

• A common operation sequence:
– Connect two elements if not already connected:

if (Find(x) != Find(y)) then Union(x,y)

12/07/2009 42CSE 373 Fall 2009 -- Dan Suciu

Up-Tree for DU/F

1 2 3 4 5 6 7Initial state

1

2

3

45

6

7Intermediate
state

Roots are the names of each set.

12/07/2009 43CSE 373 Fall 2009 -- Dan Suciu

Find Operation

• Find(x):
follow x to the root and return the root

1

2

3

45

6

7

Find(6) = 7

12/07/2009 44CSE 373 Fall 2009 -- Dan Suciu

Union Operation

• Union(i,j):
assuming i and j roots, point i to j.

1

2

3

45

6

7
Union(1,7)

12/07/2009 45CSE 373 Fall 2009 -- Dan Suciu

Simple Implementation

• Array of indices

1

2

3

45

6

7

0 1 0 7 7 5 0
1 2 3 4 5 6 7

up

Up[x] = 0 means
x is a root.

12/07/2009 46CSE 373 Fall 2009 -- Dan Suciu

Weighted Union

• Weighted Union
– Instead of arbitrarily joining two roots,

always point the smaller root to the larger root

1

2

3

45

6

7
W-Union(1,7)

2 41

12/07/2009 47CSE 373 Fall 2009 -- Dan Suciu

Elegant Array Implementation

1

2

3

45

6

72 41

0
2

1 0
1

7 7 5 0
4

1 2 3 4 5 6 7
up

weight

12/07/2009 48CSE 373 Fall 2009 -- Dan Suciu

Elegant Array Implementation

1

2

3

45

6

72 41

-2 1 -1 7 7 5 -4
1 2 3 4 5 6 7

up

Instead of a separate weight array,
can re-use the empty parent reference

12/07/2009 49CSE 373 Fall 2009 -- Dan Suciu

Path Compression

• On a Find operation point all the nodes on the
search path directly to the root.

1

2

3

45

6

7 1

2 3 456

7

PC-Find(3)

8 9

10

8 910

12/07/2009 50CSE 373 Fall 2009 -- Dan Suciu

Graphs
Formalism representing relationships among objects

Graph G = (V,E)

– Set of vertices
(aka nodes):
V = {v1,v2,…,vn}

– Set of edges:
E = {e1,e2,…,em}
where each ei connects one
vertex to another (vj,vk)

Graphs can be directed or undirected

Han

Leia

Luke

V = {Han, Leia, Luke}
E = {(Luke, Leia),

(Han, Leia),
(Leia, Han)}

12/07/2009 51CSE 373 Fall 2009 -- Dan Suciu

Undirected Graphs
In undirected graphs, edges have no specific direction
(edges are always two-way):

Thus, (u,v)E implies (v,u)E. Only one of these
edges needs to be in the set; the other is implicit.

Degree of a vertex: number of edges containing that
vertex. (Same as number of adjacent vertices.)

A

B

C

D

12/07/2009 52CSE 373 Fall 2009 -- Dan Suciu

Directed Graphs
In directed graphs (aka digraphs), edges have a
specific direction:

Thus, (u,v)E does not imply (v,u)E.

In-degree of a vertex: number of inbound edges.
Out-degree of a vertex : number of outbound edges.

Two common
depictions of
the same graph

2 edges
here

A

B

C

D

A

B

C

D

12/07/2009 53CSE 373 Fall 2009 -- Dan Suciu

Paths and Cycles
• A path is a list of vertices {v1, v2, …, vn} such that

(vi, vi+1) E for all 0 i < n.
• A cycle is a path that begins and ends at the

same node.

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

• p = {Seattle, Salt Lake City, Chicago, Dallas, San Francisco,
Seattle}

12/07/2009 54CSE 373 Fall 2009 -- Dan Suciu

Directed Acyclic Graphs (DAGs)

DAGs are directed
graphs with no
(directed) cycles.

main()

add()

access()

mult()

read()

Aside: If program’s
call-graph is a DAG,
then all procedure calls
can be in-lined

{Rooted, directed tree} {DAG} {Graph}
12/07/2009 55CSE 373 Fall 2009 -- Dan Suciu

|E| and |V|
How many edges |E| in a graph with |V| vertices?

What if the graph is directed?

What if it is undirected and connected?

Can the following bounds be simplified?
– Arbitrary graph: O(|E| + |V|2)
– Undirected, connected: O(|E| log|V| + |V| log|V|)

Some (semi-standard) terminology:
– A graph is sparse if it has O(|V|) edges (upper

bound).
– A graph is dense if it has (|V|2) edges.

0 ≤ |E| ≤ |V|2

0 ≤ |E| ≤ 2|V|2

|V|-1 ≤ |E| ≤ |V|2

O(|V|2)

O(|E| log|V|)

12/07/2009 56CSE 373 Fall 2009 -- Dan Suciu

Representation 1: Adjacency Matrix

A |V|x|V| matrix M in which an element
M[u,v] is true if and only if there is an edge
from u to v

Space requirements?
Best for what kinds of graphs?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

A

B

C

D

A B C

A

B

C

D

D
O(|V|)
O(|V|2)
O(|V|)
O(1)

O(|V|2)

dense12/07/2009 57CSE 373 Fall 2009 -- Dan Suciu

Representation 2: Adjacency List

A list (array) of length |V| in which each entry
stores a list (linked list) of all adjacent vertices

Space requirements?
Best for what kinds of graphs?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

A

B

C

D A

B

C

D
O(|V|)
O(|V|+|E|)
O(d)
O(d)

O(|V|+|E|)

sparse12/07/2009 58CSE 373 Fall 2009 -- Dan Suciu

Application: Topological Sort
Given a graph, G = (V,E), output all the vertices
in V sorted so that no vertex is output before any
other vertex with an edge to it.

CSE 142 CSE 143

CSE 321

CSE 341

CSE 378

CSE 326

CSE 370

CSE 403

CSE 421

CSE 467

CSE 451

CSE 322

Is the output unique?

CSE 303 CSE 457

What kind of input
graph is allowed? DAG

No, often called a partial ordering12/07/2009 59CSE 373 Fall 2009 -- Dan Suciu

Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree

zero vertices
3. While Q not empty

a. v = Q.dequeue; output v
b. Reduce the in-degree of all vertices adjacent to v
c. If new in-degree of any such vertex u is zero

Q.enqueue(u)

Runtime:
O(|V| + |E|)

Is the use of a queue here important?

No, can use a stack, list, set, box, etc.
Changes behavior, but result is still topological sort12/07/2009 60CSE 373 Fall 2009 -- Dan Suciu

Comparison: DFS versus BFS
• Breadth-first search

–Always finds shortest paths – optimal solutions
–Marking visited nodes can improve efficiency, but

even without this search guaranteed to terminate

• Depth-first search
–Does not always find shortest paths
–Must be careful to mark visited vertices, or you could

go into an infinite loop if there is a cycle

• Is BFS always preferable?

12/07/2009 61CSE 373 Fall 2009 -- Dan Suciu

Single Source Shortest Paths (SSSP)

• Given a graph G, edge costs ci,j, and
vertex s, find the shortest paths from s to all
vertices in G.

• Is finding paths to all the vertices harder
or easier than the previous problem?
– The same difficulty

(imagine the one we want is the last one we reach)

• But we still haven’t dealt with edge costs…
12/07/2009 62CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s Algorithm: Idea

At each step:
1) Pick closest unknown

vertex

2) Add it to known
vertices

3) Update distances

12/07/2009 63CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s Algorithm: Pseudocode

Initialize the cost of each node to

Initialize the cost of the source to 0

While there are unknown nodes left in the graph
Select an unknown node b with the lowest cost
Mark b as known
For each node a adjacent to b

if b’s cost + cost of (b, a) < a’s old cost
a’s cost = b’s cost + cost of (b, a)
a’s prev path node = b

12/07/2009 64CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 4 7

4
1

11

8

2 2 3

110 2
3

1
11

7

1

9

2

4

Vertex Visited? Cost Found by
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F12/07/2009 65CSE 373 Fall 2009 -- Dan Suciu

void Graph::dijkstra(Vertex s){
Vertex v,w;

Initialize s.dist = 0 and set dist of all other
vertices to infinity

while (there exist unknown vertices, find the
one b with the smallest distance)
b.known = true;

for each a adjacent to b
if (!a.known)

if (b.dist + weight(b,a) < a.dist){
a.dist = (b.dist + weight(b,a));

a.path = b;
}

}
}

Sounds like
deleteMin on

a heap…Sounds
like

adjacency
lists Sounds like

decreaseKe
y

Running time: O(|E| log |V|) – there are |E| edges to examine,
and each one causes a heap operation of time O(log |V|)12/07/2009 66CSE 373 Fall 2009 -- Dan Suciu

The Known
Cloud

V

Next shortest path from
inside the known cloud

W

Better path
to V? No!

Correctness: The Cloud Proof

How does Dijkstra’s decide which vertex to add to the Known set next?
• If path to V is shortest, path to W must be at least as long

(or else we would have picked W as the next vertex)
• So the path through W to V cannot be any shorter!

Source

12/07/2009 67CSE 373 Fall 2009 -- Dan Suciu

Follow-On Question

• What if I had multiple potential start points, and
need to know the minimum cost of reaching each
node from any start point?

• Can do this by changing the algorithm
– Add each start point to initial queue with cost 0

• If the algorithm is encapsulated (and highly tuned
for efficiency), this seems bad
– You need to re-implement the whole thing
– Your implementation probably isn’t as good

12/07/2009 68CSE 373 Fall 2009 -- Dan Suciu

Thinking About Graph Structure

• Working with graphs is often a problem of
setting up the right graph so that you can
apply the unmodified standard algorithm

• Change the graph, apply the encapsulated and
optimized SSSP implementation
– Add a meta-start node

– Include 0 cost edges from it to the start nodes

12/07/2009 69CSE 373 Fall 2009 -- Dan Suciu

Floyd-Warshall
for (int k = 1; k =< V; k++)
for (int i = 1; i =< V; i++)
for (int j = 1; j =< V; j++)
if ((M[i][k]+ M[k][j]) < M[i][j])
M[i][j] = M[i][k]+ M[k][j]

Invariant: After the kth iteration, the matrix includes the shortest
paths for all pairs of vertices (i,j) containing only vertices 1..k as

intermediate vertices
Simple for loop implementation intended to be fast (especially with
the help of a modern compiler). Does not bother with if statements

to filter out comparisons that will never result in a change.

12/07/2009 70CSE 373 Fall 2009 -- Dan Suciu

Problem: Large Graphs

 It is expensive to find optimal paths in large
graphs, using BFS or Dijkstra’s algorithm (for
weighted graphs)

 How can we search large graphs efficiently by
using “commonsense” about which direction
looks most promising?

12/07/2009 71CSE 373 Fall 2009 -- Dan Suciu

Minimum Spanning Trees
Given an undirected graph G=(V,E), find a
graph G’=(V, E’) such that:

– E’ is a subset of E

– |E’| = |V| - 1

– G’ is connected

– is minimal
 '),(

c
Evu

uv

G’ is a minimum
spanning tree.

12/07/2009 72CSE 373 Fall 2009 -- Dan Suciu

Reducing Best to Minimum

Let P(e) be the probability that an edge doesn’t fail.
Define:

))((log)(10 ePeC

Minimizing
Te

eC)(

is equivalent to maximizing
Te

eP)(

because

 Te

eC

Te

eC

Te
eP

)(
)(1010)(

12/07/2009 73CSE 373 Fall 2009 -- Dan Suciu

Example of Reduction

1
2

3

4

5
6

7

.80 .75
.95

.50
.95 1.0

.85

.84

.80

.89

1
2

3

4

5
6

7

.097 .125
.022

.301
.022 .000

.071

.076

.097

.051

Best Spanning Tree Problem Minimum Spanning Tree Problem

12/07/2009 74CSE 373 Fall 2009 -- Dan Suciu

Two Different Approaches

Prim’s Algorithm
Looks familiar!

Kruskals’s Algorithm
Completely different!

12/07/2009 75CSE 373 Fall 2009 -- Dan Suciu

Prim’s algorithm

Idea: Grow a tree by adding an edge from the
“known” vertices to the “unknown” vertices.
Pick the edge with the smallest weight.

G

v

known

12/07/2009 76CSE 373 Fall 2009 -- Dan Suciu

Prim’s Algorithm for MST
A node-based greedy algorithm

Builds MST by greedily adding nodes

1. Select a node to be the “root”
• mark it as known
• Update cost of all its neighbors

2. While there are unknown nodes left in the graph
a. Select an unknown node b with the smallest cost

to reach from some known node a
b. Mark b as known
c. Add (a, b) to MST
d. Update cost of all nodes adjacent to b

12/07/2009 77CSE 373 Fall 2009 -- Dan Suciu

Find MST
using Prim’s v4

v7

v2

v3 v5

v6

v1

Start with V1

2

2

5

4
7

1 10

4 6

3

8

1

V Kwn Distance path
v1 Y - -
v2 Y 2 V1
v3 Y 2 V4
v4 Y 1 V1
v5 Y 6 V7
v6 Y 1 V7
v7 Y 4 V4

Order Declared Known:
V1, V4, V2, V3, V7, V6, V5

Selected Edges:
{V2, V1}, {V3, V4}, {V4, V1},
{V5, V7}, {V6, V7}, {V7, V4}

12/07/2009 78CSE 373 Fall 2009 -- Dan Suciu

Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not
create a cycle. Pick an edge with the smallest
weight.

G=(V,E)

v

12/07/2009 79CSE 373 Fall 2009 -- Dan Suciu

Kruskal’s Algorithm for MST
An edge-based greedy algorithm

Builds MST by greedily adding edges

1. Initialize with

• empty MST
• all vertices marked unconnected
• all edges unmarked

2. While there are still unmarked edges

a. Pick the lowest cost edge (u,v) and mark it
b. If u and v are not already connected, add (u,v) to

the MST and mark u and v as connected

Sound familiar? 12/07/2009 80CSE 373 Fall 2009 -- Dan Suciu

Optimized Kruskal code
void Graph::kruskal(){

int edgesAccepted = 0;
DisjSet s(NUM_VERTICES);

while (edgesAccepted < NUM_VERTICES – 1){
e = smallest weight edge not deleted yet;
// edge e = (u, v)
uset = s.find(u);
vset = s.find(v);
if (uset != vset){

edgesAccepted++;
s.unionSets(uset, vset);

}
}

}

2|E| finds

|V| unions

|E| heap ops

12/07/2009 81CSE 373 Fall 2009 -- Dan Suciu

Find MST using Kruskal’s

A

C

B

D

F H

G

E

2 2 3

2 1

4

10

4

194

2

7

Total Cost: 14

• Is this MST unique?

• Under what condition is an MST unique?
• Unique edge weights guarantee uniqueness
12/07/2009 82CSE 373 Fall 2009 -- Dan Suciu

Best-First

52nd St

51st St

50th St

10
thA

ve

9
thA

ve

8
thA

ve

7
thA

ve

6
thA

ve

5
thA

ve

4
thA

ve

3
rdA

ve

2
ndA

ve

S G

53nd St

Path found by
Best-first

Shortest Path

12/07/2009 83CSE 373 Fall 2009 -- Dan Suciu

Network Flow

• So, how do we want to go about this?

A

C

B

D

F
H

G

E

1
7

11

5
6

4

12

13

23
9

10

4
I

611

20

12/07/2009 84CSE 373 Fall 2009 -- Dan Suciu

Ford-Fulkerson Method

• Our greedy algorithm makes choices about
how to route flow, and we never reconsider
those choices

• Can we develop a way to efficiently reconsider
the choices we already made?

• Can we do it by just modifying the graph?

12/07/2009 85CSE 373 Fall 2009 -- Dan Suciu

Residual Graph

• Constructing a residual graph:
– Use the same vertices

– Edge weights are the remaining capacity on the
edges, given the existing augmenting paths

– Add additional edges for backward capacity

– If there is a path from s to t in the residual graph,
then there is available capacity there

12/07/2009 86CSE 373 Fall 2009 -- Dan Suciu

Example

3/3

2/2

2/2

1/1
0/2

2/2

2/4

3/4

Flow / Capacity
Residual Capacity
Backwards flow

0

0

2

0

0

1

2
0

2

1

2

3

3

A

B C

D

FE
2

Augment along AEBCD (which saturates AE and EB, and empties BE)

12/07/2009 87CSE 373 Fall 2009 -- Dan Suciu

Min Cut - Example

A

B C

D

FE

3

2

2

1

2

2

4

4

TS

Capacity of cut = 512/07/2009 88CSE 373 Fall 2009 -- Dan Suciu

Coincidence?

• No, Max-flow always equals Min-cut

– If there is a cut with capacity equal to the flow, we have a maxflow:
• We can’t have a flow that’s bigger than the capacity cutting the graph! So

any cut puts a bound on the maxflow, and if we have an equality, then we
must have a maximum flow.

– If we have a maxflow, then there are no augmenting paths left
• Or else we could augment the flow along that path, which would yield a

higher total flow.

– If there are no augmenting paths, we have a cut of capacity equal to the
maxflow

• Pick a cut (S,T) where S contains all vertices reachable in the residual graph
from s, and T is everything else. Then every edge from S to T must be
saturated (or else there would be a path in the residual graph). So c(S,T) =
f(S,T) = f(s,t) = |f| and we’re done.

12/07/2009 89CSE 373 Fall 2009 -- Dan Suciu

