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Third Midterm (a.k.a. Final)

• Friday, 12:30 – 1:30, here in class

• Logistics: Closed Book

• Comprehensive
– Everything up to and including Network Flow

– Not the material we will cover this Wednesday
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• Each internal still has (up to) M-1 keys:

• Order property:
– subtree between two keys x and y 

contain leaves with values v
such that x  v < y

– Note the  “”

• Leaf nodes contain
up to L sorted keys.

B+ Trees
(book calls these B-trees)

3 7 12 21

x<3 3x<7 7x<12 12x<21 21x

M = 7
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B+ Tree Structure Properties
Root (special case) 

– has between 2 and M children (or root could be a leaf) 

Internal nodes
– store up to M-1 keys
– have between M/2 and M children

Leaf nodes
– where data is stored
– all at the same depth
– contain between L/2 and L data items

Leaves are at least ½
full

Nodes are at least ½
full
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B+ Tree: Example
B+ Tree with M = 4 (# pointers in internal node)

and L = 5 (# data items in leaf)

1, AB..

4, XY.. 

6
8
9
10

12
14
16
17 

20
22

27
28
32

34
38
39
41

44
47
49 

50
60
70

12 44

6 20 27 34 50

All leaves 
at the same 
depth

Data objects…
which I’ll ignore 
in slides

2, GH..

19 

24

Definition for later: “neighbor” is the next sibling to the left or right.12/07/2009 5CSE 373 Fall 2009 -- Dan Suciu 



6

B+ trees vs. AVL trees
Suppose again we have n = 230 ≈ 109 items:

• Depth of AVL Tree

• Depth of B+ Tree with M = 256, L = 256

So let’s see how we do this…

43

Log_128 10^9 = 4.3
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Thinking about B+ Trees
• B+ Tree insertion can cause (expensive) 

splitting and propagation up the tree
• B+ Tree deletion can cause (cheap) adoption 

or (expensive) merging and propagation up 
the tree

• Split/merge/propagation is rare if M and L
are large (Why?)

• Pick branching factor M and data items/leaf 
L such that each node takes one full 
page/block of memory/disk.
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Hash Tables

• Find, insert, delete: 
constant time on average!

• A hash table is an array 
of some fixed size.

• General idea:

key space (e.g., integers, strings)

0

…

TableSize –1 

hash function:
index = h(K)

hash table
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Separate Chaining

Separate chaining: All 
keys that map to 
the same hash 
value are kept in a 
list (or “bucket”).

0 10
1
2 42, 12, 22
3
4
5
6
7 107
8
9

Insert:
10
22
107
12
42

Thoughts about this?

Our goal is to keep it such that 
a simple list is good enough
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Open Addressing

0 8
1 109
2 10
3
4
5
6
7
8 38
9 19

Insert:
38
19
8
109
10Try h(K)

If full, try h(K)+1.
If full, try h(K)+2.
If full, try h(K)+3.
Etc…
What is f(i)?
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Linear Probing

f(i) = i

• Probe sequence:
0th probe =  h(K) % TableSize

1th probe = (h(K) + 1) % TableSize

2th probe = (h(K) + 2) % TableSize 

. . .

ith probe = (h(K) + i) % TableSize 
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no collision

no collision
collision in 
small cluster

collision in 
large cluster

Linear Probing – Clustering 
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Quadratic Probing

f(i) = i2

• Probe sequence:
0th probe =  h(K) % TableSize
1th probe = (h(K) + 1) % TableSize
2th probe = (h(K) + 4) % TableSize 
3th probe = (h(K) + 9) % TableSize
. . .
ith probe = (h(K) + i2) % TableSize 

Less likely 
to encounter 
Primary 
Clustering
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Double Hashing
Idea: given two different (good) hash functions h(K) 

and g(K), it is unlikely two keys to collide with 
both.

So…let’s try probing with a second hash function:

f(i) = i * g(K)

• Probe sequence:
0th probe =  h(K) % TableSize
1th probe = (h(K) + g(K)) % TableSize
2th probe = (h(K) + 2*g(K)) % TableSize 
3th probe = (h(K) + 3*g(K)) % TableSize
. . .
ith probe = (h(K) + i*g(K)) % TableSize 
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Deletion in Separate Chaining

How do we delete an element with separate 
chaining? 

Easy, just delete the item from the bucket
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Deletion in Open Addressing

Can we do something 
similar for open 
addressing?

• Delete
• Find
• Insert

0

1

2

3

4

5

6

16

X

59

76

h(k) = k % 7
Linear probing

Delete(23)
Find(59)
Insert(30)

Need to leave 
a marker of a
deletion
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Idea: When the table gets too full, create a 
bigger table (usually 2x as large) and 
hash all the items from the original 
table into the new table.

• When to rehash?
– Separate chaining: full ( = 1)
– Open addressing: half full ( = 0.5)
– When an insertion fails
– Some other threshold

• Cost of a single rehashing?

Rehashing

O(N)
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Why Sort?
• Allows binary search of an N-element array 

in O(log N) time
• Allows O(1) time access to kth largest 

element in the array for any k
• People tend to like their output sorted

• Sorting algorithms are a frequently used 
and heavily studied family of algorithms in 
computer science
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Stability
A sorting algorithm is stable if:

– Items in the input with the same value end up in 
the same order as when they began.
Input

Adams 1
Black 2
Brown 4
Jackson 2
Jones 4
Smith 1
Thompson 4
Washington 2
White 3
Wilson 3

Unstable sort
Adams 1
Smith 1
Washington 2
Jackson 2
Black 2
White 3
Wilson 3
Thompson 4
Brown 4
Jones 4

Stable Sort
Adams 1
Smith 1
Black 2
Jackson 2
Washington 2
White 3
Wilson 3
Brown 4
Jones 4
Thompson 4 [Sedgewick]12/07/2009 19CSE 373 Fall 2009 -- Dan Suciu 



Sorting: The Big Picture

Given n comparable elements in an array, sort 
them in an increasing order.

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Bubble sort
…

Heap sort
Binary tree sort
Merge sort
Quick sort (avg case)
…

Bucket sort
Radix sort

External
sorting

12/07/2009 20CSE 373 Fall 2009 -- Dan Suciu 



Selection Sort: Idea

1. Find the smallest element, put it 1st

2. Find the next smallest element, put it 2nd

3. Find the next smallest, put it 3rd

4. And so on …
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Bubble Sort Idea

• Take a pass through the array
– If a pair of neighboring elements are out of sort 

order, swap them.

• Take passes until no swaps are needed at any 
point in the pass.
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Insertion Sort: Idea

1. One element is by definition sorted
2. Sort first 2 elements.
3. Insert 3rd element in order.

• (First 3 elements are now sorted.)
4. Insert 4th element in order

• (First 4 elements are now sorted.)
5. And so on…
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Heap Sort: Sort with a Binary Heap

Runtime:

21664

3117

54

2, 4, 6, 16, 17, 31, 54

O(n log n)
Use a max-heap, do it in-place
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“Divide and Conquer”

• Two divide and conquer sorting methods:

• Idea 1: Divide array into two halves, 
recursively sort left and right halves, then 
merge two halves  known as Mergesort

• Idea 2 : Partition array into small items and 
large items, then recursively sort the two 
smaller portions  known as Quicksort
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Mergesort

• Divide it in two at the midpoint

• Conquer each side in turn 
(by recursively sorting)

• Merge two halves together

8 2 9 4 5 3 1 6
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Mergesort Example

8  2   9   4 5   3   1   6

8   2 1   69   4 5   3

8 2

2   8

2   4   8   9

1   2   3   4   5   6   8   9

Merge

Merge

Merge

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4    9 3   5 1   6

1   3   5   6
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Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Copy if Needed
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Quicksort

• Quicksort uses a divide and conquer strategy, 
but does not require the O(N) extra space that 
MergeSort does

– Partition array into left and right sub-arrays
• the elements in left sub-array are all less than pivot
• elements in right sub-array are all greater than pivot

– Recursively sort left and right sub-arrays

– Concatenate left and right sub-arrays in O(1) time
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Quicksort Example

2  4   3   1 8   9   6

2   1 94 6

2

1 2

1   2   3 4

1   2   3   4   5 6   8   9

Conquer

Conquer

Conquer

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

5

83

1

6   8 9
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So Which Is Best?

• It’s a trick question, a naïve question

• Myth:  “Quicksort is the best in-memory 
sorting algorithm.”

• Mergesort and Quicksort make different 
tradeoffs regarding the cost of comparison 
and the cost of a swap

• Mergesort is also the basis for external sorting 
algorithms (large N sorting)
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Permutations

• How many possible orderings are there?

• Example: a, b, c

a < b < c
a < c < b

b < a < c
b < c < a

c < a < b
c < b < a 
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Decision Tree

a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a 

a < b < c
a < c < b
c < a < b

b < a < c 
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < a < c 
b < c < a

c < b < a

b < c < a b < a < c 

a < b a > b

a > ca < c

b < c b > c

b < c b > c 

c < a c > a

The leaves contain all the possible orderings of a, b, c

a ? b
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Lower bound on Height

• The decision tree has how many leaves:

• A binary tree with L leaves has height at least:

• So the decision tree has height:

!NL

Lh 2log

)!(log2 Nh 
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log(N!)
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select just the
first N/2 terms

each of the selected
terms is  logN/2
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(N log N)

• No matter how clever you are about which 
comparisons you perform, your sorting 
algorithm with always be (N log N) 

• Your worst case will be at least N log N

• Proving this saves us the trouble of trying to 
do better than this, because we cannot

• Now that’s some Computer Science
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Doing Better

• So how can we do better?
– Need to dodge one of the proof’s assumptions

• What’s our proof based in?
– Comparisons

• Can we sort without doing comparisons?
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BucketSort (aka BinSort)
If all values are known to be between 1 and K,
create an array count of size K, 
increment counts while traversing the input, 
and finally output the result.

Example K=5.   Input = (5,1,3,4,3,2,1,1,5,4,5)

count array
1 3
2 1
3 2
4 2
5 3

Running time to sort n items?

1,1,1,2,3,3,4,4,5,5,5

N + K12/07/2009 38CSE 373 Fall 2009 -- Dan Suciu 



RadixSort

• Radix = “The base of a number system”
– We’ll use 10 for convenience
– Use a larger number in any implementation
– ASCII Strings, for example, might use 128

• Idea: 
– BucketSort on one digit at a time

• Requires stable sort!

– After sort k, the last k digits are sorted
– Set number of buckets: B = radix.
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RadixSort
• Input:126, 328, 636, 341, 416, 131, 328

0 1 2 3 4 5 6 7 8 9

BucketSort on lsd:

0 1 2 3 4 5 6 7 8 9

BucketSort on next-higher digit:

0 1 2 3 4 5 6 7 8 9

BucketSort on msd:

126
636
416

328
328

341
131

341131
636

126
328
328

416

416126
131

328
328
341

636

Output:  126, 131, 328, 328, 341, 416, 636
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Summary of sorting

O(N2) average, worst case:

– Selection Sort, Bubblesort, Insertion Sort
O(N log N) average case:

– Heapsort: In-place, not stable.
– Mergesort: O(N) extra space, stable, massive data.
– Quicksort: claimed fastest in practice, but O(N2) worst case. 

Recursion/stack requirement. Not stable.
(N log N) worst and average case:

– Any comparison-based sorting algorithm
O(N)

– Radix Sort: fast and stable. Not comparison based. Not in-
place.  Poor memory locality can undercut performance.
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Disjoint Set ADT

• Data: set of pairwise disjoint sets.

• Required operations
– Union – merge two sets to create their union

– Find – determine which set an item appears in 

• A common operation sequence: 
– Connect two elements if not already connected:

if (Find(x) != Find(y)) then Union(x,y)
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Up-Tree for DU/F

1 2 3 4 5 6 7Initial state

1

2

3

45

6

7Intermediate
state

Roots are the names of each set.
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Find Operation

• Find(x):
follow x to the root and return the root

1

2

3

45

6

7

Find(6) = 7
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Union Operation

• Union(i,j):
assuming i and j roots, point i to j.

1

2

3

45

6

7
Union(1,7)
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Simple Implementation

• Array of indices

1

2

3

45

6

7

0 1 0 7 7 5 0
1   2    3    4   5    6   7

up

Up[x] = 0 means
x is a root.
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Weighted Union

• Weighted Union
– Instead of arbitrarily joining two roots, 

always point the smaller root to the larger root

1

2

3

45

6

7
W-Union(1,7)

2 41
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Elegant Array Implementation

1

2

3

45

6

72 41

0
2

1 0
1

7 7 5 0
4

1   2   3  4  5   6   7  
up

weight
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Elegant Array Implementation

1

2

3

45

6

72 41

-2 1 -1 7 7 5 -4
1   2   3  4  5   6   7  

up

Instead of a separate weight array,
can re-use the empty parent reference
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Path Compression

• On a Find operation point all the nodes on the 
search path directly to the root.

1

2

3

45

6

7 1

2 3 456

7

PC-Find(3)

8 9

10

8 910
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Graphs
Formalism representing relationships among objects

Graph G = (V,E)

– Set of vertices
(aka nodes):
V = {v1,v2,…,vn}

– Set of edges:
E = {e1,e2,…,em} 
where each ei connects one
vertex to another (vj,vk)

Graphs can be directed or undirected

Han

Leia

Luke

V = {Han, Leia, Luke}
E = {(Luke, Leia), 

(Han, Leia), 
(Leia, Han)}
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Undirected Graphs
In undirected graphs, edges have no specific direction 
(edges are always two-way):

Thus, (u,v)E implies (v,u)E.  Only one of these 
edges needs to be in the set; the other is implicit.

Degree of a vertex: number of edges containing that 
vertex.  (Same as number of adjacent  vertices.)

A

B

C

D
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Directed Graphs
In directed graphs (aka digraphs), edges have a 
specific direction:

Thus, (u,v)E does not imply (v,u)E.

In-degree of a vertex: number of inbound edges.
Out-degree of a vertex : number of outbound edges.

Two common 
depictions of 
the same graph

2 edges 
here

A

B

C

D

A

B

C

D
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Paths and Cycles
• A path is a list of vertices {v1, v2, …, vn} such that 

(vi, vi+1)  E for all 0  i < n.
• A cycle is a path that begins and ends at the 

same node.

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

• p = {Seattle, Salt Lake City, Chicago, Dallas, San Francisco, 
Seattle}
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Directed Acyclic Graphs (DAGs)

DAGs are directed 
graphs with no 
(directed) cycles.

main()

add()

access()

mult()

read()

Aside: If program’s 
call-graph is a DAG, 
then all procedure calls 
can be in-lined

{Rooted, directed tree}  {DAG}  {Graph}
12/07/2009 55CSE 373 Fall 2009 -- Dan Suciu 



|E| and |V|
How many edges |E| in a graph with |V| vertices?

What if the graph is directed?

What if it is undirected and connected?

Can the following bounds be simplified?
– Arbitrary graph: O(|E| + |V|2)
– Undirected, connected: O(|E| log|V| + |V| log|V|)

Some (semi-standard) terminology:
– A graph is sparse if it has O(|V|) edges (upper 

bound).
– A graph is dense if it has (|V|2) edges.

0 ≤ |E| ≤ |V|2

0 ≤ |E| ≤ 2|V|2

|V|-1 ≤ |E| ≤ |V|2

O(|V|2)

O(|E| log|V|)
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Representation 1: Adjacency Matrix

A |V|x|V| matrix M in which an element 
M[u,v] is true if and only if there is an edge 
from u to v

Space requirements?
Best for what kinds of graphs?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

A

B

C

D

A B C

A

B

C

D

D
O(|V|)
O(|V|2)
O(|V|)
O(1)

O(|V|2)

dense12/07/2009 57CSE 373 Fall 2009 -- Dan Suciu 



Representation 2: Adjacency List

A list (array) of length |V| in which each entry 
stores a list (linked list) of all adjacent vertices

Space requirements?
Best for what kinds of graphs?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

A

B

C

D A

B

C

D
O(|V|)
O(|V|+|E|)
O(d)
O(d)

O(|V|+|E|)

sparse12/07/2009 58CSE 373 Fall 2009 -- Dan Suciu 



Application: Topological Sort
Given a graph, G = (V,E), output all the vertices 
in V sorted so that no vertex is output before any 
other vertex with an edge to it.

CSE 142 CSE 143

CSE 321

CSE 341

CSE 378

CSE 326

CSE 370

CSE 403

CSE 421

CSE 467

CSE 451

CSE 322

Is the output unique?

CSE 303 CSE 457

What kind of input
graph is allowed? DAG

No, often called a partial ordering12/07/2009 59CSE 373 Fall 2009 -- Dan Suciu 



Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree 

zero vertices
3. While Q not empty

a. v = Q.dequeue; output v
b. Reduce the in-degree of all vertices adjacent to v
c. If new in-degree of any such vertex u is zero

Q.enqueue(u)

Runtime:
O(|V| + |E|)

Is the use of a queue here important?

No, can use a stack, list, set, box, etc.
Changes behavior, but result is still topological sort12/07/2009 60CSE 373 Fall 2009 -- Dan Suciu 



Comparison: DFS versus BFS
• Breadth-first search

–Always finds shortest paths – optimal solutions
–Marking visited nodes can improve efficiency, but 

even without this search guaranteed to terminate

• Depth-first search
–Does not always find shortest paths
–Must be careful to mark visited vertices, or you could 

go into an infinite loop if there is a cycle

• Is BFS always preferable?
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Single Source Shortest Paths (SSSP)

• Given a graph G, edge costs ci,j, and 
vertex s, find the shortest paths from s to all
vertices in G.

• Is finding paths to all the vertices harder 
or easier than the previous problem?
– The same difficulty 

(imagine the one we want is the last one we reach)

• But we still haven’t dealt with edge costs…
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Dijkstra’s Algorithm: Idea

At each step:
1) Pick closest unknown

vertex

2) Add it to known
vertices

3) Update distances

12/07/2009 63CSE 373 Fall 2009 -- Dan Suciu 



Dijkstra’s Algorithm: Pseudocode

Initialize the cost of each node to 

Initialize the cost of the source to 0

While there are unknown nodes left in the graph
Select an unknown node b with the lowest cost
Mark b as known
For each node a adjacent to b

if b’s cost + cost of (b, a) < a’s old cost
a’s cost = b’s cost + cost of (b, a)
a’s prev path node = b
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Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 4 7

4
1

11

8

2 2 3

110 2
3

1
11

7

1

9

2

4

Vertex Visited? Cost Found by
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F12/07/2009 65CSE 373 Fall 2009 -- Dan Suciu 



void Graph::dijkstra(Vertex s){
Vertex v,w;

Initialize s.dist = 0 and set dist of all other 
vertices to infinity

while (there exist unknown vertices, find the 
one b with the smallest distance)
b.known = true;

for each a adjacent to b
if (!a.known)

if (b.dist + weight(b,a) < a.dist){
a.dist = (b.dist + weight(b,a));

a.path = b;
}

}
}

Sounds like 
deleteMin on 

a heap…Sounds 
like 

adjacency 
lists Sounds like 

decreaseKe
y

Running time: O(|E| log |V|) – there are |E| edges to examine, 
and each one causes a heap operation of time O(log |V|)12/07/2009 66CSE 373 Fall 2009 -- Dan Suciu 



The Known 
Cloud

V

Next shortest path from 
inside the known cloud

W

Better path 
to V?  No!

Correctness: The Cloud Proof

How does Dijkstra’s decide which vertex to add to the Known set next?
• If path to V is shortest, path to W must be at least as long

(or else we would have picked W as the next vertex)
• So the path through W to V cannot be any shorter!

Source
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Follow-On Question

• What if I had multiple potential start points, and 
need to know the minimum cost of reaching each 
node from any start point?

• Can do this by changing the algorithm
– Add each start point to initial queue with cost 0

• If the algorithm is encapsulated (and highly tuned 
for efficiency), this seems bad
– You need to re-implement the whole thing
– Your implementation probably isn’t as good
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Thinking About Graph Structure

• Working with graphs is often a problem of 
setting up the right graph so that you can 
apply the unmodified standard algorithm

• Change the graph, apply the encapsulated and 
optimized SSSP implementation
– Add a meta-start node

– Include 0 cost edges from it to the start nodes
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Floyd-Warshall
for (int k = 1; k =< V; k++)
for (int i = 1; i =< V; i++)
for (int j = 1; j =< V; j++)
if ( ( M[i][k]+ M[k][j] ) < M[i][j] )
M[i][j] = M[i][k]+ M[k][j] 

Invariant: After the kth iteration, the matrix includes the shortest 
paths for all pairs of vertices (i,j) containing only vertices 1..k as 

intermediate vertices
Simple for loop implementation intended to be fast (especially with 
the help of a modern compiler).  Does not bother with if statements 

to filter out comparisons that will never result in a change.
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Problem: Large Graphs

 It is expensive to find optimal paths in large 
graphs, using BFS or Dijkstra’s algorithm (for 
weighted graphs)

 How can we search large graphs efficiently by 
using “commonsense” about which direction 
looks most promising?

12/07/2009 71CSE 373 Fall 2009 -- Dan Suciu 



Minimum Spanning Trees
Given an undirected graph G=(V,E), find a 
graph G’=(V, E’) such that:

– E’ is a subset of E

– |E’| = |V| - 1

– G’ is connected

– is minimal
 '),(

c
Evu

uv

G’ is a minimum 
spanning tree.
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Reducing Best to Minimum

Let P(e) be the probability that an edge doesn’t fail.
Define:

))((log)( 10 ePeC 

Minimizing 
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Example of Reduction

1
2

3

4

5
6

7

.80 .75
.95

.50
.95 1.0

.85

.84

.80

.89

1
2

3

4

5
6
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.097 .125
.022

.301
.022 .000

.071

.076

.097

.051

Best Spanning Tree Problem Minimum Spanning Tree Problem
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Two Different Approaches

Prim’s Algorithm
Looks familiar!

Kruskals’s Algorithm
Completely different!
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Prim’s algorithm

Idea: Grow a tree by adding an edge from the 
“known” vertices to the “unknown” vertices.  
Pick the edge with the smallest weight.

G

v

known
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Prim’s Algorithm for MST
A node-based greedy algorithm

Builds MST by greedily adding nodes

1. Select a node to be the “root”
• mark it as known
• Update cost of all its neighbors

2. While there are unknown nodes left in the graph
a. Select an unknown node b with the smallest cost

to reach from some known node a
b. Mark b as known
c. Add (a, b) to MST
d. Update cost of all nodes adjacent to b
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Find MST 
using Prim’s v4

v7

v2

v3 v5

v6

v1

Start with V1

2

2

5

4
7

1 10

4 6

3

8

1

V Kwn Distance path
v1 Y - -
v2 Y 2 V1
v3 Y 2 V4
v4 Y 1 V1
v5 Y 6 V7
v6 Y 1 V7
v7 Y 4 V4

Order Declared Known:
V1, V4, V2, V3, V7, V6, V5

Selected Edges:
{V2, V1}, {V3, V4}, {V4, V1},
{V5, V7}, {V6, V7}, {V7, V4}
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Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not 
create a cycle.  Pick an edge with the smallest 
weight.

G=(V,E)

v
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Kruskal’s Algorithm for MST
An edge-based greedy algorithm

Builds MST by greedily adding edges

1. Initialize with

• empty MST
• all vertices marked unconnected
• all edges unmarked

2. While there are still unmarked edges

a. Pick the lowest cost edge (u,v) and mark it
b. If u and v are not already connected, add (u,v) to 

the MST and mark u and v as connected
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Optimized Kruskal code
void Graph::kruskal(){

int edgesAccepted = 0;
DisjSet s(NUM_VERTICES);

while (edgesAccepted < NUM_VERTICES – 1){
e = smallest weight edge not deleted yet;
// edge e = (u, v)
uset = s.find(u);
vset = s.find(v);
if (uset != vset){

edgesAccepted++;
s.unionSets(uset, vset);

}
}

}

2|E| finds

|V| unions

|E| heap ops

12/07/2009 81CSE 373 Fall 2009 -- Dan Suciu 



Find MST using Kruskal’s

A

C

B

D

F H

G

E

2 2 3

2 1

4

10

4

194

2

7

Total Cost:    14

• Is this MST unique?

• Under what condition is an MST unique?
• Unique edge weights guarantee uniqueness
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Best-First
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53nd St

Path found by 
Best-first

Shortest Path
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Network Flow

• So, how do we want to go about this?

A

C

B

D

F
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G

E

1
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9

10

4
I

611

20

12/07/2009 84CSE 373 Fall 2009 -- Dan Suciu 



Ford-Fulkerson Method

• Our greedy algorithm makes choices about 
how to route flow, and we never reconsider 
those choices

• Can we develop a way to efficiently reconsider 
the choices we already made?

• Can we do it by just modifying the graph?
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Residual Graph

• Constructing a residual graph: 
– Use the same vertices

– Edge weights are the remaining capacity on the 
edges, given the existing augmenting paths

– Add additional edges for backward capacity

– If there is a path from s to t in the residual graph, 
then there is available capacity there
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Example

3/3

2/2

2/2

1/1
0/2

2/2

2/4

3/4

Flow / Capacity
Residual Capacity
Backwards flow

0

0

2

0

0

1

2
0

2

1

2

3

3

A

B C

D

FE
2

Augment along AEBCD (which saturates AE and EB, and empties BE)
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Min Cut - Example
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Coincidence?

• No, Max-flow always equals Min-cut

– If there is a cut with capacity equal to the flow, we have a maxflow:
• We can’t have a flow that’s bigger than the capacity cutting the graph!  So 

any cut puts a bound on the maxflow, and if we have an equality, then we 
must have a maximum flow.

– If we have a maxflow, then there are no augmenting paths left
• Or else we could augment the flow along that path, which would yield a 

higher total flow.

– If there are no augmenting paths, we have a cut of capacity equal to the 
maxflow

• Pick a cut (S,T) where S contains all vertices reachable in the residual graph 
from s, and T is everything else.  Then every edge from S to T must be 
saturated (or else there would be a path in the residual graph). So c(S,T) = 
f(S,T) = f(s,t) = |f| and we’re done.
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