
CSE 373

Data Structures & AlgorithmsData Structures & Algorithms

Lectures 19-20

Graphs

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu 1

Graph… ADT?
• Not quite an ADT…

operations not clear

• A formalism for representing
relationships between objects

Graph G = (V,E)

Han

Leia

Luke

2

Graph G = (V,E)

– Set of vertices:

V = {v 1,v 2,…,v n}

– Set of edges:
E = {e 1,e 2,…,e m}
where each ei connects two
vertices (v i1 ,v i2)

Leia

V = { Han, Leia , Luke }
E = {(Luke , Leia),

(Han, Leia),
(Leia , Han)}

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Examples of Graphs

• The web

– Vertices are webpages

– Each edge is a link from one page to another

• Call graph of a program

3

• Call graph of a program

– Vertices are subroutines

– Edges are calls and returns

• Social networks

– Vertices are people

– Edges connect friends

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Graph Definitions
In directed graphs, edges have a direction:

Han

Leia

Luke

4

In undirected graphs, they don’t (are two-way):

v is adjacent to u if (u,v) ∈∈∈∈ E

Leia

Han

Leia

Luke

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Weighted Graphs

20
Mukilteo

Clinton

Each edge has an associated weight or cost.

5

30

35

60

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Paths and Cycles
• A path is a list of vertices {v1, v2, …, vn} such that (vi,

vi+1) ∈∈∈∈ E for all 0 ≤≤≤≤ i < n.

• A cycle is a path that begins and ends at the same
node.

Seattle
Chicago

6

San Francisco
Dallas

Salt Lake City

p ={Seattle, SaltLakeCity, Chicago, Dallas, SanFrancisco, Seattle}
11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Path Length and Cost

• Path length: the number of edges in the path

• Path cost: the sum of the costs of each edge

Seattle
Chicago3.5

2 2

7

San Francisco
Dallas

Salt Lake City

2 2

2.5

3

2
2.5

2.5

length(p) = 5 cost(p) = 11.511/23/2009 CSE 373 Fall 2009 -- Dan Suciu

More Definitions:

Simple Paths and Cycles
A simple path repeats no vertices (except that the first can also be

the last):

p = {Seattle, Salt Lake City, San Francisco, Dallas}

p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

A cycle is a path that starts and ends at the same node:

8

A cycle is a path that starts and ends at the same node:

p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

p = {Seattle, Salt Lake City, Seattle, San Francisco, Seattle}

A simple cycle is a cycle that is also a simple path (in undirected
graphs, no edge can be repeated)

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Trees as Graphs

• Every tree is a graph with

some restrictions:

–the tree is directed

A

B C

9

–the tree is directed

–there is exactly one

directed path from the

root to every node

D E F

HG

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Directed Acyclic Graphs (DAGs)

DAGs are directed

graphs with no

(directed) cycles.

main()

mult()

10

add()

access() read()

Aside: If program call-
graph is a DAG, then
all procedure calls can
be in-lined

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu
{Tree} ⊂ {DAG} ⊂ {Graph}

Rep 1: Adjacency Matrix

A |V| x |V| array in which an element

(u,v) is true if and only if there is an edge

from u to v Han Luke Leia

Han

11

Han

Leia

Luke
Han

Luke

Leia

Space requirements?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Rep 2: Adjacency List

A |V| -ary list (array) in which each entry stores

a list (linked list) of all adjacent vertices

Han Han

12

Han

Leia

Luke
Han

Luke

Leia

Space requirements?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Some Applications:

Moving Around Washington

13

What’s the shortest way to get from Seattle to
Pullman?

Edge labels: Distance11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Some Applications:

Moving Around Washington

14

What’s the fastest way to get from Seattle to
Pullman?

Edge labels: Distance, speed limit11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Some Applications:

Reliability of Communication

15

If Wenatchee’s phone exchange goes down,
can Seattle still talk to Pullman?

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Some Applications:

Bus Routes in Downtown Seattle

1611/23/2009 CSE 373 Fall 2009 -- Dan Suciu

If we’re at 3rd and Pine, how can we get to
1st and University using Metro?

How about 4th and Seneca?

Graph Connectivity

• Undirected graphs are connected if there is a path between any

two vertices

• Directed graphs are strongly connected if there is a path from any

one vertex to any other

17

• Directed graphs are weakly connected if there is a path between

any two vertices, ignoring direction

• A complete graph has an edge between every pair of vertices

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Graph Traversals

• Breadth-first search (and depth-first search) work for
arbitrary (directed or undirected) graphs - not just
mazes!

– Must mark visited vertices. Why?

– So you do not go into an infinite loop! It’s not a tree.

18

–

• Either can be used to determine connectivity:

– Is there a path between two given vertices?

– Is the graph (weakly/strongly) connected?

• Which one:

– Uses a queue?

– Uses a stack?

– Always finds the shortest path (for unweighted graphs)?
11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

The Shortest Path Problem
• Given a graph G, edge costs ci,j, and vertices s and t in

G, find the shortest path from s to t.

• For a path p = v0 v1 v2 … vk

– unweighted length of path p = k (a.k.a. length)

19

– unweighted length of path p = k (a.k.a. length)

– weighted length of path p = ∑i=0..k-1 ci,i+1 (a.k.a cost)

– Path length equals path cost when ?

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Single Source Shortest Paths (SSSP)

• Given a graph G, edge costs ci,j, and vertex s,

find the shortest paths from s to all vertices in G.

– Is this harder or easier than the previous problem?

2011/23/2009 CSE 373 Fall 2009 -- Dan Suciu

All Pairs Shortest Paths (APSP)

• Given a graph G and edge costs ci,j, find the

shortest paths between all pairs of vertices in G.

– Is this harder or easier than SSSP?

21

– Could we use SSSP as a subroutine to solve this?

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Breadth-First Graph Search

BFS(Start)BFS(Start)

for all nodes x do x.dist = ∞;

Start.dist = 0;

enqueue(Start, Open);

repeat

2211/23/2009 CSE 373 Fall 2009 -- Dan Suciu

repeat

if (empty(Open)) then return;

x:= dequeue(Open);

for each y in children(x) do

if (y.dist = ∞)
then { y.dist = x.dist + 1;

enqueue(y, Open); }
end-repeat

Depth-First Graph Search

DFS(Start)DFS(Start)

for all nodes x do x.dist = ∞;

Start.dist = 0;

push(Start, Open);

repeat

2311/23/2009 CSE 373 Fall 2009 -- Dan Suciu

repeat

if (empty(Open)) then return;

x:= pop(Open);

for each y in children(x) do

if (y.dist > x.dist + 1)
then { y.dist = x.dist + 1;

push(y, Open); }
end-repeat

Comparison: DFS versus BFS

• Depth-first search

–Does not find shortest paths naturally

• Had to do the extra test y.dist > x.dist + 1

–Must be careful to mark visited vertices (using x.dist, or

some other means), or you could go into an infinite loop if

there is a cycle

24

there is a cycle

• Breadth-first search

–Always finds shortest paths – optimal solutions

–Marking visited nodes can improve efficiency, but even

without doing so search is guaranteed to terminate

–Is BFS always preferable?

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

DFS Space Requirements

• Assume:

– Longest path in graph is length d

– Highest number of out-edges is k

• DFS stack grows at most to size dk

25

• DFS stack grows at most to size dk

– For k=10, d=15, size is 150

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

BFS Space Requirements

• Assume

– Distance from start to a goal is d

– Highest number of out edges is k BFS

• Queue could grow to size kd

26

• Queue could grow to size kd

– For k=10, d=15, size is 1,000,000,000,000,000

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Conclusion

• For large graphs, DFS is more memory

efficient, if we can limit the maximum path

length to some fixed d.

– If we knew the distance from the start to the goal

27

– If we knew the distance from the start to the goal

in advance, we can just not add any children to

stack after level d

– But what if we don’t know d in advance?

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Edsger Wybe Dijkstra
(1930-2002)

• Invented concepts of structured programming, synchronization, weakest

precondition, and "semaphores" for controlling computer processes. The

Oxford English Dictionary cites his use of the words "vector" and "stack"

28

Oxford English Dictionary cites his use of the words "vector" and "stack"

in a computing context.

• Believed programming should be taught without computers

• 1972 Turing Award

• “In their capacity as a tool, computers will be but a ripple on the surface

of our culture. In their capacity as intellectual challenge, they are

without precedent in the cultural history of mankind.”

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Shortest Path for Weighted Graphs

• Given a graph G = (V, E) with edge

costs c(e), and a vertex s ∈∈∈∈ V, find the

shortest (lowest cost) path from s to every

vertex in V

29

vertex in V

• Assume: only positive edge costs

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s Algorithm for

Single Source Shortest Path

• Similar to breadth-first search, but uses a heap

instead of a queue:

– Always select (expand) the vertex that has a

lowest-cost path to the start vertex

30

lowest-cost path to the start vertex

• Correctly handles the case where the lowest-

cost (shortest) path to a vertex is not the one

with fewest edges

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s Algorithm: Idea

Adapt BFS to handle
weighted graphs

Two kinds of vertices:
– Finished or known– Finished or known

vertices

• Shortest distance has
been computed

– Unknown vertices

• Have tentative
distance

11/23/2009 31CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s Algorithm: Idea

At each step:

1) Pick closest unknown

vertexvertex

2) Add it to known vertices

3) Update distances

11/23/2009 32CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s Algorithm: Pseudocode

∞Initialize the cost of each node to ∞

Initialize the cost of the source to 0

While there are unknown nodes left in the graphWhile there are unknown nodes left in the graph
Select an unknown node b with the lowest cost
Mark b as known
For each node a adjacent to b

if b’s cost + cost of (b, a) < a’s old cost
a’s cost = b’s cost + cost of (b, a)
a’s prev path node = b

11/23/2009 33CSE 373 Fall 2009 -- Dan Suciu

Important Features

• Once a vertex is made known , the cost of the

shortest path to that node is known

• While a vertex is still not known , another

shorter path to it might still be foundshorter path to it might still be found

• The shortest path itself can found by following

the backward pointers stored in node.path

11/23/2009 34CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 � � �

�

�

�

�

2 2 3

110 2

3

1
11

7

1

9

2

4

�7

Vertex Visited? Cost Found by

A 0

B ??

C ??

D ??

E ??

F ??

G ??

H ??
11/23/2009 35CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 � �

4

1

�

�

2 2 3

110 2

3

1
11

7

1

9

2

4

�7

Vertex Visited? Cost Found by

A Y 0

B <=2 A

C <=1 A

D <=4 A

E ??

F ??

G ??

H ??
11/23/2009 36CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 � �

4

1

12

�

2 2 3

110 2

3

1
11

7

1

9

2

4

127

Vertex Visited? Cost Found by

A Y 0

B <=2 A

C Y 1 A

D <=4 A

E <=12 C

F ??

G ??

H ??
11/23/2009 37CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 4 �

4

1

12

�

2 2 3

110 2

3

1
11

7

1

9

2

4

127

Vertex Visited? Cost Found by

A Y 0

B Y 2 A

C Y 1 A

D <=4 A

E <=12 C

F <=4 B

G ??

H ??
11/23/2009 38CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 4 �

4

1

12

�

2 2 3

110 2

3

1
11

7

1

9

2

4

127

Vertex Visited? Cost Found by

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E <=12 C

F <=4 B

G ??

H ??
11/23/2009 39CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 4 7

4

1

12

�

2 2 3

110 2

3

1
11

7

1

9

2

4

127

Vertex Visited? Cost Found by

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E <=12 C

F Y 4 B

G ??

H <=7 F
11/23/2009 40CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 4 7

4

1

12

8

2 2 3

110 2

3

1
11

7

1

9

2

4

127

Vertex Visited? Cost Found by

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E <=12 C

F Y 4 B

G <=8 H

H Y 7 F
11/23/2009 41CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2

3

1
11

7

1

9

2

4

117

Vertex Visited? Cost Found by

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E <=11 G

F Y 4 B

G Y 8 H

H Y 7 F
11/23/2009 42CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2

3

1
11

7

1

9

2

4

117

Vertex Visited? Cost Found by

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F
11/23/2009 43CSE 373 Fall 2009 -- Dan Suciu

Another

v3

v1

v2 v4

v0
s

1

2

2

2
1

1
1

5 3

5

6

10
V Visited? Cost Found by

v6
v5

10v0

v1

v2

v3

v4

v5

v6
11/23/2009 44CSE 373 Fall 2009 -- Dan Suciu

Another

v3

v1

v2 v4

v0
s

1

2

2

2
1

1
1

5 3

5

6

10
V Visited? Cost Found by

v6
v5

10v0 Y 0

v1

v2 <= 2 V0

v3 <= 1 V0

v4

v5

v6
11/23/2009 45CSE 373 Fall 2009 -- Dan Suciu

Another

v3

v1

v2 v4

v0
s

1

2

2

2
1

1
1

5 3

5

6

10
V Visited? Cost Found by

v6
v5

10v0 Y 0

v1 <= 6 V3

v2 <= 2 V0

v3 Y 1 V0

v4 <= 2 V3

v5 <= 7 V3

v6 <= 6 V3
11/23/2009 46CSE 373 Fall 2009 -- Dan Suciu

Another

v3

v1

v2 v4

v0
s

1

2

2

2
1

1
1

5 3

5

6

10
V Visited? Cost Found by

v6
v5

10v0 Y 0

v1 <= 6 V3

v2 Y 2 V0

v3 Y 1 V0

v4 <= 2 V3

v5 <= 4 V2

v6 <= 6 V3
11/23/2009 47CSE 373 Fall 2009 -- Dan Suciu

Another

v3

v1

v2 v4

v0
s

1

2

2

2
1

1
1

5 3

5

6

10
V Visited? Cost Found by

v6
v5

10v0 Y 0

v1 <= 3 V4

v2 Y 2 V0

v3 Y 1 V0

v4 Y 2 V3

v5 <= 4 V2

v6 <= 6 V3
11/23/2009 48CSE 373 Fall 2009 -- Dan Suciu

Another

v3

v1

v2 v4

v0
s

1

2

2

2
1

1
1

5 3

5

6

10
V Visited? Cost Found by

v6
v5

10v0 Y 0

v1 Y 3 V4

v2 Y 2 V0

v3 Y 1 V0

v4 Y 2 V3

v5 <= 4 V2

v6 <= 6 V3
11/23/2009 49CSE 373 Fall 2009 -- Dan Suciu

Another

v3

v1

v2 v4

v0
s

1

2

2

2
1

1
1

5 3

5

6

10
V Visited? Cost Found by

v6
v5

10v0 Y 0

v1 Y 3 V4

v2 Y 2 V0

v3 Y 1 V0

v4 Y 2 V3

v5 Y 4 V2

v6 <= 6 V3
11/23/2009 50CSE 373 Fall 2009 -- Dan Suciu

Another

v3

v1

v2 v4

v0
s

1

2

2

2
1

1
1

5 3

5

6

10
V Visited? Cost Found by

v6
v5

10v0 Y 0

v1 Y 3 V4

v2 Y 2 V0

v3 Y 1 V0

v4 Y 2 V3

v5 Y 4 V2

v6 Y 6 V3
11/23/2009 51CSE 373 Fall 2009 -- Dan Suciu

void Graph::dijkstra(Vertex s){
Vertex v,w;

Initialize s.dist = 0 and set dist of
all other vertices to infinity

while (there exist unknown vertices,
find the one b with the smallest distance)

b.known = true;

for each a adjacent to b

deleteMin
on a heap…

adjacency listsfor each a adjacent to b
if (!a.known)

if (b.dist + weight(b,a) < a.dist){
a.dist = (b.dist + weight(b,a));

a.path = b;
}

}
}

decreaseKey

Running time: O(|E| log |V|) – there are |E| edges to examine,

and each one causes a heap operation of time O(log |V|)11/23/2009 52CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s Algorithm: Summary

• Classic algorithm for solving SSSP in weighted graphs without
negative weights

• A greedy algorithm (irrevocably makes decisions without
considering future consequences)

• Intuition for correctness:

– shortest path from source vertex to itself is 0

– cost of going to adjacent nodes is at most edge weights

– cheapest of these must be shortest path to that node

– update paths for new node and continue picking cheapest path

11/23/2009 53CSE 373 Fall 2009 -- Dan Suciu

The Known

V

Next shortest path from
inside the known cloud

Better path
to V? No!

Correctness: The Cloud Proof

The Known

Cloud

W

to V? No!

How does Dijkstra’s decide which vertex to add to the Known set next?

• If path to V is shortest, path to Wmust be at least as long

(or else we would have picked Was the next vertex)

• So the path through Wto V cannot be any shorter!

Source

11/23/2009 54CSE 373 Fall 2009 -- Dan Suciu

Correctness: Inside the Cloud

Prove by induction on # of nodes in the cloud:

Initial cloud is just the source with shortest path 0

Assume: Everything inside the cloud has the correct

shortest path

Inductive step: Only when we prove the shortest path to

some node v (which is not in the cloud) is correct, we add

it to the cloud

When does Dijkstra’s algorithm not work?

11/23/2009 55CSE 373 Fall 2009 -- Dan Suciu

The Trouble with

Negative Weight Cycles

A B

E

2
10

1-5

C D

E1-5

2

What’s the shortest path from A to E?

Problem?

11/23/2009 56CSE 373 Fall 2009 -- Dan Suciu

Dijkstra’s vs BFS

At each step:

1) Pick closest unknown vertex

2) Add it to finished vertices

3) Update distances

Dijkstra’s Algorithm

At each step:

1) Pick vertex from queue

2) Add it to visited vertices

3) Update queue with neighbors

Breadth-first SearchDijkstra’s Algorithm Breadth-first Search

11/23/2009 57CSE 373 Fall 2009 -- Dan Suciu

Two Questions

• What if I had multiple potential start points,

and need to know the minimum cost of

reaching each node from any start point?

• What if I want to know the minimum cost

between every pair of nodes in the graph?

11/23/2009 58CSE 373 Fall 2009 -- Dan Suciu

Single-Source Shortest Path

• Given a graph G = (V, E) and a single

distinguished vertex s, find the shortest

weighted path from s to every other vertex

in G.

All-Pairs Shortest Path:All-Pairs Shortest Path:

• Find the shortest paths between all pairs of

vertices in the graph.

• How?

11/23/2009 59CSE 373 Fall 2009 -- Dan Suciu

Analysis

• Total running time for Dijkstra’s:

O(|V| log |V| + |E| log |V|) (heaps)

What if we want to find the shortest path from

each point to ALL other points?each point to ALL other points?

11/23/2009 60CSE 373 Fall 2009 -- Dan Suciu

Dynamic Programming

Algorithmic technique that systematically

records the answers to sub-problems in a

table and re-uses those recorded results

(rather than re-computing them).(rather than re-computing them).

Simple Example: Calculating the Nth Fibonacci

number.

Fib(N) = Fib(N-1) + Fib(N-2)

11/23/2009 61CSE 373 Fall 2009 -- Dan Suciu

Floyd-Warshall

for (int k = 1; k =< V; k++)

for (int i = 1; i =< V; i++)

for (int j = 1; j =< V; j++)

if ((M[i][k]+ M[k][j]) < M[i][j])
M[i][j] = M[i][k]+ M[k][j] M[i][j] = M[i][k]+ M[k][j]

Invariant: After the kth iteration, the matri
includes the shortest pathsfor all
pairs of vertices (i,j) containing only
vertices 1..k as intermediate vertices

11/23/2009 62CSE 373 Fall 2009 -- Dan Suciu

a b c d e

a 0 2 - -4 -

b

c

d e

a

-4

2
-2

1

31

4

Initial state of the
matrix:

b - 0 -2 1 3

c - - 0 - 1

d - - - 0 4

e - - - - 0

M[i][j] = min(M[i][j], M[i][k]+ M[k][j])
11/23/2009 63CSE 373 Fall 2009 -- Dan Suciu

a b c d e

b

c

d e

a

-4

2
-2

1

31

4

Floyd-Warshall -
for All-pairs
shortest path

a 0 2 0 -4 0

b - 0 -2 1 -1

c - - 0 - 1

d - - - 0 4

e - - - - 0

Final Matrix
Contents

11/23/2009 64CSE 373 Fall 2009 -- Dan Suciu

Application: Topological Sort
Given a directed graph, G = (V,E) , output all the

vertices in V such that no vertex is output before

any other vertex with an edge to it.

CSE 321

CSE 403

CSE 322

This is a partial ordering, for sorting we had a total ordering

65

CSE 142 CSE 143 CSE 341

CSE 378

CSE 326

CSE 370

CSE 421

CSE 467

CSE 451

Is the output unique?
Minimize and

DO a topo
sort11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Topological Sort: Take One

1. Label each vertex with its in-degree (# of
inbound edges)

2. While there are vertices remaining:

a. Choose a vertex v of in-degree zero; output v

66

a. Choose a vertex v of in-degree zero; output v

b. Reduce the in-degree of all vertices adjacent to v

c. Remove v from the list of vertices

Runtime:

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

void Graph::topsort(){

Vertex v, w;

labelEachVertexWithItsIn-degree();

for (int counter=0; counter < NUM_VERTICES;
counter++){

v = findNewVertexOfDegreeZero();

Time?

67

v = findNewVertexOfDegreeZero();

v.topologicalNum = counter;

for each w adjacent to v

w.indegree--;

}

}

Time?

What’s the bottleneck?

Time?

O(depends)11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

Topological Sort: Take Two

1. Label each vertex with its in-degree

2. Initialize a queue Q to contain all in-degree zero
vertices

3. While Q not empty

a. v = Q.dequeue; output v

68

a. v = Q.dequeue; output v

b. Reduce the in-degree of all vertices adjacent to v

c. If new in-degree of any such vertex u is zero
Q.enqueue(u)

Runtime:

Note: could use a stack, list, set,
box, … instead of a queue

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

void Graph::topsort(){

Queue q(NUM_VERTICES); int counter = 0; Vertex v, w ;

labelEachVertexWithItsIn-degree();

q.makeEmpty();

for each vertex v

if (v.indegree == 0)

q.enqueue(v);

while (! q.isEmpty ()){

intialize the
queue

get a vertex with

69

while (! q.isEmpty ()){

v = q.dequeue();

v.topologicalNum = ++counter;

for each w adjacent to v

if (--w.indegree == 0)

q.enqueue(w);

}

}

get a vertex with
indegree 0

insert new
eligible
vertices

Runtime: O(|V| + |E|)
11/23/2009 CSE 373 Fall 2009 -- Dan Suciu

