CSE 373 Data Structures & Algorithms

Lectures 19-20 Graphs

Graph... ADT?

- Not quite an ADT... operations not clear
- A formalism for representing relationships between objects

Graph
$$G = (V, E)$$

– Set of vertices:

$$V = \{v_1, v_2, \dots, v_n\}$$

- Set of edges:
 E = {e₁,e₂,...,e_m}
 where each e_i connects two
 vertices (v_{i1},v_{i2})

Examples of Graphs

- The web
 - Vertices are webpages
 - Each edge is a link from one page to another
- Call graph of a program
 - Vertices are subroutines
 - Edges are calls and returns
- Social networks
 - Vertices are people
 - Edges connect friends

Graph Definitions

In *directed* graphs, edges have a direction:

In undirected graphs, they don't (are two-way):

v is adjacent to u if $(u,v) \in E$

Weighted Graphs

Each edge has an associated weight or cost.

Paths and Cycles

- A path is a list of vertices {v₁, v₂, ..., vₙ} such that (vᵢ, vᵢ₊₁) ∈ E for all 0 ≤ i < n.
- A *cycle* is a path that begins and ends at the same node.

p ={Seattle, SaltLakeCity, Chicago, Dallas, SanFrancisco, Seattle}

Path Length and Cost

- Path length: the number of edges in the path
- Path cost: the sum of the costs of each edge

More Definitions: Simple Paths and Cycles

A *simple path* repeats no vertices (except that the first can also be the last):

```
p = {Seattle, Salt Lake City, San Francisco, Dallas}
```

p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

A cycle is a path that starts and ends at the same node:

```
p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}
```

p = {Seattle, Salt Lake City, Seattle, San Francisco, Seattle}

A *simple cycle* is a cycle that is also a simple path (in undirected graphs, no edge can be repeated)

Trees as Graphs

- Every tree is a graph with some restrictions:
 - -the tree is directed
 - —there is exactly one directed path from the root to every node

Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program callgraph is a DAG, then all procedure calls can be in-lined

Rep 1: Adjacency Matrix

A | V | x | V | array in which an element (u,v) is true if and only if there is an edge from u to v

Han Luke Leia Han Luke Leia

Runtimes:

Iterate over vertices?

Iterate over edges?

Iterate edges adj. to vertex?

Existence of edge? Space requirements?

CSE 373 Fall 2009 -- Dan Suciu

Rep 2: Adjacency List

A |v|-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices

Runtimes:

Iterate over vertices?

Iterate over edges?

Iterate edges adj. to vertex?

Existence of edge? Space requirements? CSE 373 Fall 2009 -- Dan Suciu

Some Applications: Moving Around Washington

What's the *shortest way* to get from Seattle to Pullman?

11/23/2009 Edge labels: CSE 373 Fall 2009 -- Dan Suciu

Distance

Some Applications: Moving Around Washington

What's the fastest way to get from Seattle to Pullman?

Edge labels: CSE 373 Fall 2009 -- Dan Suciu

Distance, speed limit

Some Applications: Reliability of Communication

If Wenatchee's phone exchange goes down, can Seattle still talk to Pullman?

Some Applications: Bus Routes in Downtown Seattle

If we're at 3rd and Pine, how can we get to 1st and University using Metro?
How about 4th and Seneca?

Graph Connectivity

Undirected graphs are connected if there is a path between any two vertices

 Directed graphs are strongly connected if there is a path from any one vertex to any other

 Directed graphs are weakly connected if there is a path between any two vertices, ignoring direction

• A complete graph has an edge between every pair of vertices

Graph Traversals

- Breadth-first search (and depth-first search) work for arbitrary (directed or undirected) graphs - not just mazes!
 - Must mark visited vertices. Why?
 - So you do not go into an infinite loop! It's not a tree.
- Either can be used to determine connectivity:
 - Is there a path between two given vertices?
 - Is the graph (weakly/strongly) connected?
- Which one:
 - Uses a queue?
 - Uses a stack?
 - Always finds the shortest path (for unweighted graphs)?

The Shortest Path Problem

 Given a graph G, edge costs c_{i,j}, and vertices s and t in G, find the shortest path from s to t.

- For a path $p = v_0 v_1 v_2 \dots v_k$
 - unweighted length of path p = k (a.k.a. length)
 - weighted length of path $p = \sum_{i=0..k-1} c_{i,i+1}$ (a.k.a cost)
 - Path length equals path cost when ?

Single Source Shortest Paths (SSSP)

 Given a graph G, edge costs c_{i,j}, and vertex s, find the shortest paths from s to <u>all</u> vertices in G.

— Is this harder or easier than the previous problem?

All Pairs Shortest Paths (APSP)

• Given a graph G and edge costs $c_{i,j}$, find the shortest paths between <u>all pairs</u> of vertices in G.

— Is this harder or easier than SSSP?

— Could we use SSSP as a subroutine to solve this?

Breadth-First Graph Search

```
BFS(Start)
 for all nodes x do x.dist = \infty;
 Start.dist = 0;
 enqueue(Start, Open);
 repeat
   if (empty(Open)) then return;
   x:= dequeue(Open);
   for each y in children(x) do
     if (y.dist = \infty)
      then \{ y.dist = x.dist + 1 \}
            enqueue(y, Open); }
  end-repeat
```

Depth-First Graph Search

```
DFS(Start)
 for all nodes x do x.dist = \infty;
 Start.dist = 0;
 push(Start, Open);
 repeat
   if (empty(Open)) then return;
   x:= pop(Open);
   for each y in children(x) do
     if (y.dist > x.dist + 1)
      then \{ y.dist = x.dist + 1 \}
            push(y, Open); }
  end-repeat
```

Comparison: DFS versus BFS

- Depth-first search
 - —Does not find shortest paths naturally
 - Had to do the extra test y.dist > x.dist + 1
 - –Must be careful to mark visited vertices (using x.dist, or some other means), or you could go into an infinite loop if there is a cycle
- Breadth-first search
 - Always finds shortest paths optimal solutions
 - Marking visited nodes can improve efficiency, but even without doing so search is guaranteed to terminate
 - —Is BFS always preferable?

DFS Space Requirements

Assume:

- Longest path in graph is length d
- Highest number of out-edges is k
- DFS stack grows at most to size dk
 - For k=10, d=15, size is 150

BFS Space Requirements

- Assume
 - Distance from start to a goal is d
 - Highest number of out edges is k BFS
- Queue could grow to size k^d
 - For k=10, d=15, size is 1,000,000,000,000

Conclusion

- For large graphs, DFS is more memory efficient, if we can limit the maximum path length to some fixed d.
 - If we knew the distance from the start to the goal in advance, we can just not add any children to stack after level d
 - But what if we don't know d in advance?

Edsger Wybe Dijkstra (1930-2002)

- Invented concepts of structured programming, synchronization, weakest precondition, and "semaphores" for controlling computer processes. The Oxford English Dictionary cites his use of the words "vector" and "stack" in a computing context.
- Believed programming should be taught without computers
- 1972 Turing Award
- "In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind."

Shortest Path for Weighted Graphs

Given a graph G = (V, E) with edge costs c(e), and a vertex s ∈ V, find the shortest (lowest cost) path from s to every vertex in V

Assume: only positive edge costs

Dijkstra's Algorithm for Single Source Shortest Path

- Similar to breadth-first search, but uses a heap instead of a queue:
 - Always select (expand) the vertex that has a lowest-cost path to the start vertex
- Correctly handles the case where the lowestcost (shortest) path to a vertex is not the one with fewest edges

Dijkstra's Algorithm: Idea

Adapt BFS to handle weighted graphs

Two kinds of vertices:

- Finished or known vertices
 - Shortest distance has been computed
- Unknown vertices
 - Have tentative distance

Dijkstra's Algorithm: Idea

At each step:

- Pick closest unknown vertex
- 2) Add it to known vertices
- 3) Update distances

Dijkstra's Algorithm: Pseudocode

Initialize the cost of each node to ∞

Initialize the cost of the source to 0

While there are unknown nodes left in the graph Select an unknown node b with the lowest cost Mark b as known

For each node a adjacent to b

if b's cost + cost of (b, a) < a's old cost

a's cost = b's cost + cost of (b, a)

a's prev path node = b

Important Features

- Once a vertex is made known, the cost of the shortest path to that node is known
- While a vertex is still not known, another shorter path to it might still be found
- The shortest path itself can found by following the backward pointers stored in node.path

Dijkstra's Algorithm in action

Vertex	Visited?	Cost	Found by
А		0	
В		??	
С		??	
D		??	
E		??	
F		??	
G		??	
Н	CSF 373 Fall 2	?? 009 Dan Suci	U.

Dijkstra's Algorithm in action

Vertex	Visited?	Cost	Found by
А	Υ	0	
В		<=2	А
С		<=1	А
D		<=4	Α
Е		??	
F		??	
G		??	
Н	CSF 373 Fall 2	?? 009 Dan Suci	U.

Vertex	Visited?	Cost	Found by
А	Υ	0	
В		<=2	А
С	Υ	1	А
D		<=4	А
Е		<=12	С
F		??	
G		??	
Н	CSF 373 Fall 2	?? 009 Dan Suci	U.

Vertex	Visited?	Cost	Found by
А	Υ	0	
В	Υ	2	А
С	Υ	1	Α
D		<=4	Α
Е		<=12	С
F		<=4	В
G		??	
Н	CSF 373 Fall 2	?? 009 Dan Suci	u.

Vertex	Visited?	Cost	Found by
А	Υ	0	
В	Υ	2	А
С	Υ	1	А
D	Υ	4	Α
Е		<=12	С
F		<=4	В
G		??	
Н	CSF 373 Fall 2	?? 009 Dan Suci	u.

Vertex	Visited?	Cost	Found by
А	Υ	0	
В	Y	2	А
С	Y	1	А
D	Υ	4	А
Е		<=12	С
F	Υ	4	В
G		??	
Н	CSF 373 Fall 2	<=7 009 Dan Suci	F

Vertex	Visited?	Cost	Found by
А	Υ	0	
В	Υ	2	А
С	Υ	1	А
D	Υ	4	Α
Е		<=12	С
F	Υ	4	В
G		<=8	Н
Н	CSF 373 Fall 2	7 009 Dan Suci	, F

Vertex	Visited?	Cost	Found by
А	Υ	0	
В	Υ	2	А
С	Υ	1	Α
D	Υ	4	Α
Е		<=11	G
F	Υ	4	В
G	Y	8	Н
Н	CSF 373 Fall 2	7 009 Dan Suci	, F

Vertex	Visited?	Cost	Found by
А	Υ	0	
В	Y	2	А
С	Y	1	А
D	Υ	4	Α
Е	Y	11	G
F	Υ	4	В
G	Υ	8	Н
Н	CSF 373 Fall 2	7 009 Dan Suci	F

V	Visited?	Cost	Found by
v0			
v1			
v2			
v3			
v4			
v5			
v6 _{11/2}	3/2009		CSE 37

V	Visited?	Cost	Found by
v0	Y	0	
v1			
v2		<= 2	V0
v3		<= 1	V0
v4			
v5			
v6 _{11/2}	3/2009		CSE 37

V	Visited?	Cost	Found by
v0	Y	0	
v1		<= 6	V3
v2		<= 2	V0
v3	Y	1	V0
v4		<= 2	V3
v5		<= 7	V3
v6 _{11/2}	3/2009	<= 6	V3 CSE 37

V	Visited?	Cost	Found by
v0	Y	0	
v1		<= 6	V3
v2	Y	2	V0
v3	Y	1	V0
v4		<= 2	V3
v5		<= 4	V2
v6 _{11/2}	3/2009	<= 6	V3 CSE 37

V	Visited?	Cost	Found by
v0	Υ	0	
v1		<= 3	V4
v2	Y	2	V0
v3	Υ	1	V0
v4	Y	2	V3
v5		<= 4	V2
v6 _{11/2}	3/2009	<= 6	V3 _{CSE 37}

V	Visited?	Cost	Found by
v0	Y	0	
v1	Y	3	V4
v2	Y	2	V0
v3	Υ	1	V0
v4	Y	2	V3
v5		<= 4	V2
v6 _{11/2}	3/2009	<= 6	V3 CSE 37

V	Visited?	Cost	Found by
v0	Υ	0	
v1	Y	3	V4
v2	Y	2	V0
v3	Y	1	V0
v4	Y	2	V3
v5	Υ	4	V2
v6 _{11/2}	3/2009	<= 6	V3 _{CSE 37}

V	Visited?	Cost	Found by
v0	Y	0	
v1	Y	3	V4
v2	Y	2	V0
v3	Y	1	V0
v4	Y	2	V3
v5	Y	4	V2
v6 _{11/2}	Y 3/2009	6	V3 _{CSE 37}

```
void Graph::dijkstra(Vertex s){
  Vertex v,w;
                                            deleteMin
  Initialize s.dist = 0 and set dist of
                                           on a heap...
  all other vertices to infinity
  while (there exist unknown vertices,
  find the one b with the smallest distance)
    b.known = true;
                                          adjacency lists
    for each a adjacent to b_
      if (!a.known)
        if (b.dist + weight(b,a) < a.dist){</pre>
       a.dist = (b.dist + weight(b,a));
          a.path = b;
                                      decreaseKey
```

Running time: $O(|E| \log |V|)$ – there are |E| edges to examine, and each one causes a heap operation of time $O(\log |V|)$

Dijkstra's Algorithm: Summary

- Classic algorithm for solving SSSP in weighted graphs without negative weights
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Intuition for correctness:
 - shortest path from source vertex to itself is 0
 - cost of going to adjacent nodes is at most edge weights
 - cheapest of these must be shortest path to that node
 - update paths for new node and continue picking cheapest path

Correctness: The Cloud Proof

How does Dijkstra's decide which vertex to add to the Known set next?

- If path to V is shortest, path to W must be at least as long (or else we would have picked W as the next vertex)
- •1/23\$300the path through w to \$\$€amnot26@anynshorter!

Correctness: Inside the Cloud

Prove by induction on # of nodes in the cloud: Initial cloud is just the source with shortest path 0

<u>Assume</u>: Everything inside the cloud has the correct shortest path

<u>Inductive step</u>: Only when we prove the shortest path to some node **v** (which is <u>not</u> in the cloud) is correct, we add it to the cloud

When does Dijkstra's algorithm not work?

The Trouble with Negative Weight Cycles

What's the shortest path from A to E?

Problem?

Dijkstra's vs BFS

At each step:

- 1) Pick closest unknown vertex
- 2) Add it to finished vertices
- 3) Update distances

Dijkstra's Algorithm

At each step:

- 1) Pick vertex from queue
- 2) Add it to visited vertices
- 3) Update queue with neighbors

Breadth-first Search

Two Questions

 What if I had multiple potential start points, and need to know the minimum cost of reaching each node from any start point?

 What if I want to know the minimum cost between every pair of nodes in the graph?

Single-Source Shortest Path

 Given a graph G = (V, E) and a single distinguished vertex s, find the shortest weighted path from s to every other vertex in G.

All-Pairs Shortest Path:

- Find the shortest paths between all pairs of vertices in the graph.
- How?

Analysis

Total running time for Dijkstra's:
 O(|V| log |V| + |E| log |V|) (heaps)

What if we want to find the shortest path from each point to ALL other points?

Dynamic Programming

Algorithmic technique that systematically records the answers to sub-problems in a table and re-uses those recorded results (rather than re-computing them).

Simple Example: Calculating the Nth Fibonacci number.

$$Fib(N) = Fib(N-1) + Fib(N-2)$$

Floyd-Warshall

```
for (int k = 1; k =< V; k++)
for (int i = 1; i =< V; i++)
for (int j = 1; j =< V; j++)
  if ( ( M[i][k]+ M[k][j] ) < M[i][j] )
  M[i][j] = M[i][k]+ M[k][j]</pre>
```

Invariant: After the kth iteration, the matri includes the shortest pathsfor all pairs of vertices (i,j) containing only vertices 1..k as intermediate vertices

Initial state of the matrix:

	2	þ	2	
-4	1	3	-2	\odot
	4	e	1	

	а	b	С	d	е
а	0	2	-	-4	-
b	-	0	-2	1	3
С	_	-	0	_	1
d	_	_	_	0	4
е	-	-	-	-	0

 $M[i][j] = \min(M[i][j], M[i][k] + M[k][j])$

Floyd-Warshall - for All-pairs shortest path

	а	b	С	d	е
а	0	2	0	-4	0
b	_	0	-2	1	-1
С	_	_	0	_	1
d	-	-	-	0	4
е	-	-	-	-	0

Final Matrix Contents

This is a partial ordering, for sorting we had a total ordering Application: Topological Sort

Given a directed graph, G = (V, E), output all the vertices in V such that no vertex is output before any other vertex with an edge to it.

Is the output unique?

Minimize and DO a topo sort

Topological Sort: Take One

- Label each vertex with its in-degree (# of inbound edges)
- 2. While there are vertices remaining:
 - a. Choose a vertex v of *in-degree zero*; output v
 - b. Reduce the in-degree of all vertices adjacent to v
 - c. Remove v from the list of vertices

Runtime:

```
void Graph::topsort(){
  Vertex v, w;
                                         Time?
  labelEachVertexWithItsIn-degree();
  for (int counter=0; counter < NUM_VERTICES;</pre>
                   counter++){
    v = findNewVertexOfDegreeZero();
                                          Time?
    v.topologicalNum = counter;
    for each w adjacent to v
                                    Time?
      w.indegree--;
                          What's the bottleneck?
```


Topological Sort: Take Two

- 1. Label each vertex with its in-degree
- Initialize a queue Q to contain all in-degree zero vertices
- 3. While *Q* not empty
 - a. v = Q.dequeue; output v
 - b. Reduce the in-degree of all vertices adjacent to *v*
 - If new in-degree of any such vertex u is zero
 Q.enqueue(u)

Note: could use a stack, list, set, box, ... instead of a queue

Runtime:

```
void Graph::topsort(){
   Queue q(NUM_VERTICES); int counter = 0; Vertex v, w;
    labelEachVertexWithItsIn-degree();
   q.makeEmpty();
   for each vertex v
      if (v.indegree == 0)
        q.enqueue(v);
   while (!q.isEmpty()){
     v = q.dequeue();
      v.topologicalNum = ++counter;
      for each w adjacent to v
        if (--w.indegree == 0)
          q.enqueue(w);
Runtime: O(|V| + |E|)
   11/23/2009
                        CSF 373 Fall 2009 -- Dan Suciu
```

intialize the queue

get a vertex with indegree 0

> insert new eligible vertices