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Graph… ADT?
• Not quite an ADT…

operations not clear

• A formalism for representing 
relationships between objects

Graph G = (V,E)

Han

Leia

Luke
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Graph G = (V,E)

– Set of vertices:

V = {v 1,v 2,…,v n}

– Set of edges:
E = {e 1,e 2,…,e m} 
where each ei connects two
vertices (v i1 ,v i2 )

Leia

V = { Han, Leia , Luke }
E = {( Luke , Leia ), 

( Han, Leia ), 
( Leia , Han)}
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Examples of Graphs

• The web

– Vertices are webpages

– Each edge is a link from one page to another

• Call graph of a program
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• Call graph of a program

– Vertices are subroutines

– Edges are calls and returns

• Social networks

– Vertices are people

– Edges connect friends
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Graph Definitions
In directed graphs, edges have a direction:

Han

Leia

Luke
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In undirected graphs, they don’t (are two-way):

v is adjacent to u if (u,v) ∈∈∈∈ E

Leia

Han

Leia

Luke
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Weighted Graphs

20
Mukilteo

Clinton

Each edge has an associated weight or cost.
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30

35

60

Edmonds

Seattle

Bremerton

Bainbridge

Kingston
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Paths and Cycles
• A path is a list of vertices {v1, v2, …, vn} such that (vi, 

vi+1) ∈∈∈∈ E for all 0 ≤≤≤≤ i < n.

• A cycle is a path that begins and ends at the same 
node.

Seattle
Chicago

6

San Francisco
Dallas

Salt Lake City

p ={Seattle, SaltLakeCity, Chicago, Dallas, SanFrancisco, Seattle}
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Path Length and Cost

• Path length: the number of edges in the path

• Path cost: the sum of the costs of each edge

Seattle
Chicago3.5

2 2

7

San Francisco
Dallas

Salt Lake City

2 2

2.5

3

2
2.5

2.5

length(p) = 5 cost(p) = 11.511/23/2009 CSE 373 Fall 2009 -- Dan Suciu 



More Definitions:

Simple Paths and Cycles
A simple path repeats no vertices (except that the first can also be 

the last):

p = {Seattle, Salt Lake City, San Francisco, Dallas}

p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

A cycle is a path that starts and ends at the same node:
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A cycle is a path that starts and ends at the same node:

p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

p = {Seattle, Salt Lake City, Seattle, San Francisco, Seattle}

A simple cycle is a cycle that is also a simple path (in undirected 
graphs, no edge can be repeated)
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Trees as Graphs

• Every tree is a graph with 

some restrictions:

–the tree is directed

A

B C
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–the tree is directed

–there is exactly one 

directed path from the 

root to every node

D E F

HG
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Directed Acyclic Graphs (DAGs)

DAGs are directed 

graphs with no 

(directed) cycles.

main()

mult()
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add()

access() read()

Aside: If program call-
graph is a DAG, then 
all procedure calls can 
be in-lined
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Rep 1: Adjacency Matrix

A |V| x |V| array in which an element 

(u,v) is true if and only if there is an edge 

from u to v Han Luke Leia

Han
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Han

Leia

Luke
Han

Luke

Leia

Space requirements?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?11/23/2009 CSE 373 Fall 2009 -- Dan Suciu 



Rep 2: Adjacency List

A |V| -ary list (array) in which each entry stores 

a list (linked list) of all adjacent vertices

Han Han

12

Han

Leia

Luke
Han

Luke

Leia

Space requirements?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?11/23/2009 CSE 373 Fall 2009 -- Dan Suciu 



Some Applications:

Moving Around Washington

13

What’s the shortest way to get from Seattle to 
Pullman?

Edge labels: Distance11/23/2009 CSE 373 Fall 2009 -- Dan Suciu 



Some Applications:

Moving Around Washington

14

What’s the fastest way to get from Seattle to 
Pullman?

Edge labels: Distance, speed limit11/23/2009 CSE 373 Fall 2009 -- Dan Suciu 



Some Applications:

Reliability of Communication

15

If Wenatchee’s phone exchange goes down,
can Seattle still talk to Pullman?
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Some Applications:

Bus Routes in Downtown Seattle
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If we’re at 3rd and Pine, how can we get to
1st and University using Metro?  

How about 4th and Seneca?



Graph Connectivity

• Undirected graphs are connected if there is a path between any 

two vertices

• Directed graphs are strongly connected if there is a path from any 

one vertex to any other
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• Directed graphs are weakly connected if there is a path between 

any two vertices, ignoring direction

• A complete graph has an edge between every pair of vertices
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Graph Traversals

• Breadth-first search (and depth-first search) work for 
arbitrary (directed or undirected) graphs - not just 
mazes!

– Must mark visited vertices.  Why?

– So you do not go into an infinite loop! It’s not a tree.
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–

• Either can be used to determine connectivity:

– Is there a path between two given vertices?

– Is the graph (weakly/strongly) connected?

• Which one:

– Uses a queue?

– Uses a stack?

– Always finds the shortest path (for unweighted graphs)?
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The Shortest Path Problem
• Given a graph G, edge costs ci,j, and vertices s and t in 

G, find the shortest path from s to t.

• For a path p = v0 v1 v2 … vk

– unweighted length of path p = k (a.k.a. length)

19

– unweighted length of path p = k (a.k.a. length)

– weighted length of path p = ∑i=0..k-1 ci,i+1    (a.k.a cost)

– Path length equals path cost when ?
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Single Source Shortest Paths (SSSP)

• Given a graph G, edge costs ci,j, and vertex s,

find the shortest paths from s to all vertices in G.

– Is this harder or easier than the previous problem?
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All Pairs Shortest Paths (APSP)

• Given a graph G and edge costs ci,j, find the 

shortest paths between all pairs of vertices in G.

– Is this harder or easier than SSSP?
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– Could we use SSSP as a subroutine to solve this?
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Breadth-First Graph Search

BFS( Start)BFS( Start)

for all nodes x do x.dist = ∞;

Start.dist = 0;

enqueue(Start, Open);

repeat
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repeat

if (empty(Open)) then return;

x:= dequeue(Open);

for each y in children(x) do

if (y.dist = ∞)
then { y.dist = x.dist + 1;

enqueue(y, Open);  }
end-repeat



Depth-First Graph Search

DFS( Start)DFS( Start)

for all nodes x do x.dist = ∞;

Start.dist = 0;

push(Start, Open);

repeat
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repeat

if (empty(Open)) then return;

x:= pop(Open);

for each y in children(x) do

if (y.dist > x.dist + 1)
then { y.dist = x.dist + 1;

push(y, Open);  }
end-repeat



Comparison: DFS versus BFS

• Depth-first search

–Does not find shortest paths naturally

• Had to do the extra test y.dist > x.dist + 1

–Must be careful to mark visited vertices (using x.dist, or 

some other means), or you could go into an infinite loop if 

there is a cycle

24

there is a cycle

• Breadth-first search

–Always finds shortest paths – optimal solutions

–Marking visited nodes can improve efficiency, but even 

without doing so search is guaranteed to terminate

–Is BFS always preferable?
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DFS Space Requirements

• Assume:

– Longest path in graph is length d

– Highest number of out-edges is k

• DFS stack grows at most to size dk
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• DFS stack grows at most to size dk

– For k=10, d=15, size is 150
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BFS Space Requirements

• Assume 

– Distance from start to a goal is d

– Highest number of out edges is k BFS

• Queue could grow to size kd
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• Queue could grow to size kd

– For k=10, d=15, size is 1,000,000,000,000,000
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Conclusion

• For large graphs, DFS is more memory 

efficient, if we can limit the maximum path 

length to some fixed d.

– If we knew the distance from the start to the goal 

27

– If we knew the distance from the start to the goal 

in advance, we can just not add any children to 

stack after level d

– But what if we don’t know d in advance?
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Edsger Wybe Dijkstra 
(1930-2002)

• Invented concepts of structured programming, synchronization, weakest 

precondition, and "semaphores" for controlling computer processes. The 

Oxford English Dictionary cites his use of the words "vector" and "stack" 

28

Oxford English Dictionary cites his use of the words "vector" and "stack" 

in a computing context.

• Believed programming should be taught without computers

• 1972 Turing Award

• “In their capacity as a tool, computers will be but a ripple on the surface 

of our culture. In their capacity as intellectual challenge, they are 

without precedent in the cultural history of mankind.”
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Shortest Path for Weighted Graphs

• Given a graph G = (V, E) with edge 

costs c(e), and a vertex s ∈∈∈∈ V, find the 

shortest (lowest cost) path from s to every 

vertex in V

29

vertex in V

• Assume: only positive edge costs
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Dijkstra’s Algorithm for 

Single Source Shortest Path

• Similar to breadth-first search, but uses a heap

instead of a queue:

– Always select (expand) the vertex that has a 

lowest-cost path to the start vertex 

30

lowest-cost path to the start vertex 

• Correctly handles the case where the lowest-

cost (shortest) path to a vertex is not the one 

with fewest edges
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Dijkstra’s Algorithm: Idea

Adapt BFS to handle 
weighted graphs

Two kinds of vertices:
– Finished or known– Finished or known

vertices

• Shortest distance has 
been computed

– Unknown vertices

• Have tentative 
distance
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Dijkstra’s Algorithm: Idea

At each step:

1) Pick closest unknown

vertexvertex

2) Add it to known vertices

3) Update distances
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Dijkstra’s Algorithm: Pseudocode

∞Initialize the cost of each node to ∞

Initialize the cost of the source to 0

While there are unknown nodes left in the graphWhile there are unknown nodes left in the graph
Select an unknown node b with the lowest cost
Mark b as known
For each node a adjacent to b

if b’s cost + cost of (b, a) < a’s old cost
a’s cost = b’s cost + cost of (b, a)
a’s prev path node = b
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Important Features

• Once a vertex is made known , the cost of the 

shortest path to that node is known

• While a vertex is still not known , another 

shorter path to it might still be foundshorter path to it might still be found

• The shortest path itself can found by following 

the backward pointers stored in node.path

11/23/2009 34CSE 373 Fall 2009 -- Dan Suciu 



Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 � � �

�

�

�

�

2 2 3

110 2

3

1
11

7

1

9

2

4

�7

Vertex Visited? Cost Found by

A 0

B ??

C ??

D ??

E ??

F ??

G ??

H ??
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Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 � �

4

1

�

�

2 2 3

110 2

3

1
11

7

1

9

2

4

�7

Vertex Visited? Cost Found by

A Y 0

B <=2 A

C <=1 A

D <=4 A

E ??

F ??

G ??

H ??
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Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 � �

4

1

12

�

2 2 3

110 2

3

1
11

7

1

9

2

4

127

Vertex Visited? Cost Found by

A Y 0

B <=2 A

C Y 1 A

D <=4 A

E <=12 C

F ??

G ??

H ??
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Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 4 �

4

1

12

�

2 2 3

110 2

3

1
11

7

1

9

2

4

127

Vertex Visited? Cost Found by

A Y 0

B Y 2 A

C Y 1 A

D <=4 A

E <=12 C

F <=4 B

G ??

H ??
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Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 4 �

4

1

12

�

2 2 3

110 2

3

1
11

7

1

9

2

4

127

Vertex Visited? Cost Found by

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E <=12 C

F <=4 B

G ??

H ??
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Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 4 7

4

1

12

�

2 2 3

110 2

3

1
11

7

1

9

2

4

127

Vertex Visited? Cost Found by

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E <=12 C

F Y 4 B

G ??

H <=7 F
11/23/2009 40CSE 373 Fall 2009 -- Dan Suciu 



Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 4 7

4

1

12

8

2 2 3

110 2

3

1
11

7

1

9

2

4

127

Vertex Visited? Cost Found by

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E <=12 C

F Y 4 B

G <=8 H

H Y 7 F
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Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2

3

1
11

7

1

9

2

4

117

Vertex Visited? Cost Found by

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E <=11 G

F Y 4 B

G Y 8 H

H Y 7 F
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Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2

3

1
11

7

1

9

2

4

117

Vertex Visited? Cost Found by

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F
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Another

v3

v1

v2 v4

v0
s

1

2

2

2
1

1
1

5 3

5

6

10
V Visited? Cost Found by

v6
v5

10v0

v1

v2

v3

v4

v5

v6
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Another

v3

v1

v2 v4

v0
s

1

2

2

2
1

1
1

5 3

5

6

10
V Visited? Cost Found by

v6
v5

10v0 Y 0

v1

v2 <= 2 V0

v3 <= 1 V0

v4

v5

v6
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Another

v3

v1

v2 v4

v0
s

1

2

2

2
1

1
1

5 3

5

6

10
V Visited? Cost Found by

v6
v5

10v0 Y 0

v1 <= 6 V3

v2 <= 2 V0

v3 Y 1 V0

v4 <= 2 V3

v5 <= 7 V3

v6 <= 6 V3
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Another

v3

v1

v2 v4

v0
s

1

2

2

2
1

1
1

5 3

5

6

10
V Visited? Cost Found by

v6
v5

10v0 Y 0

v1 <= 6 V3

v2 Y 2 V0

v3 Y 1 V0

v4 <= 2 V3

v5 <= 4 V2

v6 <= 6 V3
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Another

v3

v1

v2 v4

v0
s

1

2

2

2
1

1
1

5 3

5

6

10
V Visited? Cost Found by

v6
v5

10v0 Y 0

v1 <= 3 V4

v2 Y 2 V0

v3 Y 1 V0

v4 Y 2 V3

v5 <= 4 V2

v6 <= 6 V3
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Another

v3

v1

v2 v4

v0
s

1

2

2

2
1

1
1

5 3

5

6

10
V Visited? Cost Found by

v6
v5

10v0 Y 0

v1 Y 3 V4

v2 Y 2 V0

v3 Y 1 V0

v4 Y 2 V3

v5 <= 4 V2

v6 <= 6 V3
11/23/2009 49CSE 373 Fall 2009 -- Dan Suciu 



Another

v3

v1

v2 v4

v0
s

1

2

2

2
1

1
1

5 3

5

6

10
V Visited? Cost Found by

v6
v5

10v0 Y 0

v1 Y 3 V4

v2 Y 2 V0

v3 Y 1 V0

v4 Y 2 V3

v5 Y 4 V2

v6 <= 6 V3
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Another

v3

v1

v2 v4

v0
s

1

2

2

2
1

1
1

5 3

5

6

10
V Visited? Cost Found by

v6
v5

10v0 Y 0

v1 Y 3 V4

v2 Y 2 V0

v3 Y 1 V0

v4 Y 2 V3

v5 Y 4 V2

v6 Y 6 V3
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void Graph::dijkstra(Vertex s){
Vertex v,w;

Initialize s.dist = 0 and set dist of
all other vertices to infinity

while (there exist unknown vertices,
find the one b with the smallest distance)

b.known = true;

for each a adjacent to b

deleteMin
on a heap…

adjacency listsfor each a adjacent to b
if (!a.known)

if (b.dist + weight(b,a) < a.dist){
a.dist = (b.dist + weight(b,a));

a.path = b;
}

}
}

decreaseKey

Running time: O(|E| log |V|) – there are |E| edges to examine, 

and each one causes a heap operation of time O(log |V|)11/23/2009 52CSE 373 Fall 2009 -- Dan Suciu 



Dijkstra’s Algorithm: Summary

• Classic algorithm for solving SSSP in weighted graphs without 
negative weights

• A greedy algorithm (irrevocably makes decisions without 
considering future consequences)

• Intuition for correctness:

– shortest path from source vertex to itself is 0

– cost of going to adjacent nodes is at most edge weights

– cheapest of these must be shortest path to that node

– update paths for new node and continue picking cheapest path
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The Known 

V

Next shortest path from 
inside the known cloud

Better path 
to V?  No!

Correctness: The Cloud Proof

The Known 

Cloud

W

to V?  No!

How does Dijkstra’s decide which vertex to add to the Known set next?

• If path to V is shortest, path to Wmust be at least as long

(or else we would have picked Was the next vertex)

• So the path through Wto V cannot be any shorter!

Source
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Correctness: Inside the Cloud

Prove by induction on # of nodes in the cloud:

Initial cloud is just the source with shortest path 0

Assume: Everything inside the cloud has the correct 

shortest path

Inductive step: Only when we prove the shortest path to 

some node v (which is not in the cloud) is correct, we add 

it to the cloud

When does Dijkstra’s algorithm not work?
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The Trouble with 

Negative Weight Cycles

A B

E

2
10

1-5

C D

E1-5

2

What’s the shortest path from A to E?

Problem?
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Dijkstra’s vs BFS

At each step:

1) Pick closest unknown vertex

2) Add it to finished vertices

3) Update distances

Dijkstra’s Algorithm

At each step:

1) Pick vertex from queue

2) Add it to visited vertices

3) Update queue with neighbors

Breadth-first SearchDijkstra’s Algorithm Breadth-first Search
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Two Questions

• What if I had multiple potential start points, 

and need to know the minimum cost of 

reaching each node from any start point?

• What if I want to know the minimum cost 

between every pair of nodes in the graph?
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Single-Source Shortest Path

• Given a graph G = (V, E) and a single 

distinguished vertex s, find the shortest 

weighted path from s to every other vertex 

in G.

All-Pairs Shortest Path:All-Pairs Shortest Path:

• Find the shortest paths between all pairs of 

vertices in the graph.

• How?
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Analysis

• Total running time for Dijkstra’s:

O(|V| log |V| + |E| log |V|)    (heaps)

What if we want to find the shortest path from 

each point to ALL other points?each point to ALL other points?
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Dynamic Programming

Algorithmic technique that systematically 

records the answers to sub-problems in a 

table and re-uses those recorded results 

(rather than re-computing them).(rather than re-computing them).

Simple Example: Calculating the Nth Fibonacci 

number.

Fib(N) = Fib(N-1) + Fib(N-2)
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Floyd-Warshall

for (int k = 1; k =< V; k++)

for (int i = 1; i =< V; i++)

for (int j = 1; j =< V; j++)

if ( ( M[i][ k]+ M[ k][j ] ) < M[i][j] )
M[i][j ] = M[i][ k]+ M[k][j ] M[i][j ] = M[i][ k]+ M[k][j ] 

Invariant: After the kth iteration, the matri
includes the shortest pathsfor all
pairs of vertices (i,j) containing only
vertices 1..k as intermediate vertices
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a b c d e

a 0 2 - -4 -

b

c

d e

a

-4

2
-2

1

31

4

Initial state of the 
matrix:

b - 0 -2 1 3

c - - 0 - 1

d - - - 0 4

e - - - - 0

M[i][j] = min(M[i][j], M[i][k]+ M[k][j])
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a b c d e

b

c

d e

a

-4

2
-2

1

31

4

Floyd-Warshall -
for All-pairs 
shortest path

a 0 2 0 -4 0

b - 0 -2 1 -1

c - - 0 - 1

d - - - 0 4

e - - - - 0

Final Matrix 
Contents
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Application: Topological Sort
Given a directed graph, G = (V,E) , output all the 

vertices in V such that no vertex is output before 

any other vertex with an edge to it.

CSE 321

CSE 403

CSE 322

This is a partial ordering, for sorting we had a total ordering

65

CSE 142 CSE 143 CSE 341

CSE 378

CSE 326

CSE 370

CSE 421

CSE 467

CSE 451

Is the output unique?
Minimize and 

DO a topo
sort11/23/2009 CSE 373 Fall 2009 -- Dan Suciu 



Topological Sort: Take One

1. Label each vertex with its in-degree (# of 
inbound edges)

2. While there are vertices remaining:

a. Choose a vertex v of in-degree zero; output v
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a. Choose a vertex v of in-degree zero; output v

b. Reduce the in-degree of all vertices adjacent to v

c. Remove v from the list of vertices

Runtime:
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void Graph::topsort(){

Vertex v, w;

labelEachVertexWithItsIn-degree();

for (int counter=0; counter < NUM_VERTICES; 
counter++){

v = findNewVertexOfDegreeZero();

Time?
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v = findNewVertexOfDegreeZero();

v.topologicalNum = counter;

for each w adjacent to v

w.indegree--;

}

}

Time?

What’s the bottleneck?

Time?

O(depends)11/23/2009 CSE 373 Fall 2009 -- Dan Suciu 



Topological Sort: Take Two

1. Label each vertex with its in-degree

2. Initialize a queue Q to contain all in-degree zero 
vertices

3. While Q not empty

a. v = Q.dequeue; output v
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a. v = Q.dequeue; output v

b. Reduce the in-degree of all vertices adjacent to v

c. If new in-degree of any such vertex u is zero
Q.enqueue(u)

Runtime:

Note: could use a stack, list, set,
box, … instead of a queue

11/23/2009 CSE 373 Fall 2009 -- Dan Suciu 



void Graph::topsort(){

Queue q(NUM_VERTICES);  int counter = 0; Vertex v, w ;

labelEachVertexWithItsIn-degree();

q.makeEmpty();

for each vertex v

if (v.indegree == 0)

q.enqueue(v);

while (! q.isEmpty ()){

intialize the
queue

get a vertex with
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while (! q.isEmpty ()){

v = q.dequeue();

v.topologicalNum = ++counter;

for each w adjacent to v

if (--w.indegree == 0)

q.enqueue(w);

}

}

get a vertex with
indegree 0

insert new
eligible
vertices

Runtime: O(|V| + |E|)
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