CSE 373
Data Structures & Algorithms

Lecture 17
Disjoint Sets (Il)

11/18/2009 CSE 373 Fall 2009 -- Dan Suciu

Brief Midterm Postmortem

Heaps

Hash tables

Bubble sort

Properties of Sorting Algorithms
Merging

Analysis of Weighted Union

 With weighted union an up-tree of height h has
weight at least 2".

Proof by induction

— Basis: h = 0. The up-tree has one node, 2°=1

— Inductive step: Assume true for all h’ < h.

11/18/2009

T W(T,) >W(T,) >2"1
. | ; ;-
Minimum Welght Weighted Inductlon_
up-tree of height hf union hypothesis
formed by W(T) > 2h-14 2h-1=2n

weighted unions

CSE 373 Fall 2009 -- Dan Suciu 3

Analysis of Weighted Union

Let T be an up-tree of weight n formed by
weighted union. Let h be its height.

n> 2"

log, n>h

Find(x) in tree T takes O(log n) time.
Can we do better?

Worst Case for Weighted Union

n/2 Weighted Unions

cccce e o

.’i .’i .’i .’i

11/18/2009 CSE 373 Fall 2009 -- Dan Suciu

Example of Worst Cast (cont’)

Aftern-1=n/2 + n/4 + ...+ 1 Weighted Unions
< o

If there are n =®nodes then the longest
path from leaf to root has length k.

Elegant Array Implementation

LRI

2 /Q @
6
1 2 345 6 7
up [0]1/0/7|7]/5]0
weight | 2 1 4

Weighted Union

W Uni on(1,]
/[/1 and | are
W wel ght
W wei ght
If W < w t
up[i] =]
wei ght [j]
el se
upl)] :=1;
wel ght [1]

| ndex) {
root s/ /
1]
)]
nen

Path Compression

* On a Find operation point all the nodes on the search
path directly to the root.

11/18/2009 CSE 373 Fall 2009 -- Dan Suciu 9

QALY
00444444

1111111111

Self-Adjustment Works

| ——
VIVIVIVIVIN

PC-Find(x)

CSE 373 Fall 2009 -- Dan Suciu

Draw the result of Find(e):

11/18/2009 CSE 373 Fall 2009 -- Dan Suciu

11

Path Compression Find

PC-Find(i : 1ndex) {
r.=1;
while up[r] # 0O do //find root//
r = up[r];
I1f I #r then [/conpress path//
K :=up[lI],;
while k #r do
up[1] = r;
| .= k;
kK = up[K]
return(r)

}

Interlude: A Really Slow Function

Ackermann’s function is a really big function A(x, y)
with inverse d(x, y) which is really small

How fast does a(x, y) grow?

a(x, y) = 4 for x far larger than the number of atoms
in the universe (23%)

o shows up in:
— Computation Geometry (surface complexity)
— Combinatorics of sequences

11/18/2009 CSE 373 Fall 2009 -- Dan Suciu 13

A More Comprehensible Slow Function

log* x = number of times you need to compute
log to bring value down to at most 1

E.g.log*2=1
og* 4 =log* 22=2
og* 16 = log* 22° =3 (log log log 16 = 1)
og* 65536 = log* 222 = 4 (log log log log 65536 = 1)
og* 26236 = ... =5

Take this: a(m,n) grows even slower than log*n !/

11/18/2009 CSE 373 Fall 2009 -- Dan Suciu 14

Disjoint Union / Find
with Weighted Union and PC

* Worst case time complexity for a W-Union is O(1)
and for a PC-Find is O(log n).

 Time complexity for m = n operations on n elements
is O(m log™* n)

— Log * n < 7 for all reasonable n. Essentially constant time
per operation!

* Using “ranked union” gives an even better bound
theoretically.

Amortized Complexity

e For disjoint union / find with weighted union
and path compression.

— average time per operation is essentially a
constant.

— worst case time for a PC-Find is O(log n).

* Anindividual operation can be costly, but over
time the average cost per operation is not.

Recursive

Find Solutions

Fi nd(up[]

/[precondition:

| nteger array, X . Integer) | nt eger {
X 1sin the range 1 to size//

I f up[x] = 0 then return Xx
el se return Fi nd(up, up[x]);
}
lterative
Fi nd(up]] | nteger array, X . Integer) | nt eger {

}

/[precondition:

X 1sin the range 1 to size//

while up[x] # 0 do
X = up[x];
return x;

