CSE 373

Data Structures \& Algorithms

Lecture 13
Sorting (I)
Chapter 7 in Weiss

Sorting

- Input
- an array A of data records
- a key value in each data record
- a comparison function which imposes a consistent ordering on the keys
- Output
- reorganize the elements of A such that
- For any i and j, if $i<j$ then $A[i] \leq A[j]$

Consistent Ordering

The comparison function must provide a consistent ordering on the set of possible keys

- You can compare any two keys and get back an indication of $a<b, a>b$, or $a=b$ (trichotomy)
- The comparison functions must be consistent
- If compare (a, b) says $a<b$, then compare (b, a) must say $b>a$
- If compare (a, b) says $a=b$, then compare (b, a) must say $b=a$
- If compare (a, b) says $a=b$, then equals (a, b) and equals (b, a) must say $a=b$

Why Sort?

- Allows binary search of an N-element array in $\mathrm{O}(\log \mathrm{N})$ time
- Allows $\mathrm{O}(1)$ time access to k th largest element in the array for any k
- Sorting algorithms are among the most frequently used algorithms in computer science

Space

- How much space does the sorting algorithm require in order to sort the collection of items?
- Is copying needed?
- In-place sorting algorithms: no copying or at most O(1) additional temp space.
- External memory sorting - data so large that does not fit in memory

Stability

A sorting algorithm is stable if:

- Items in the input with the same value end up in the same order as when they began.

Input	Unstable sort				Stable Sort	
Adams	1	Adams	1	Adams	1	
Black	2	Smith	1	Smith	1	
Brown	4	Washington	2	Black	2	
Jackson	2	Jackson	2	Jackson	2	
Jones	4	Black	2	Washington	2	
Smith	1	White	3	White	3	
Thompson	4	Wilson	3	Wilson	3	
Washington	2	Thompson	4	Brown	4	
White	3	Brown	4	Jones	4	
Wilson	3	Jones	4	Thompson	4 [Sedgewick]	

Time

How fast is the algorithm?

- The definition of a sorted array A says that for any $i<j, A[i]$ $\leq \mathrm{A}[\mathrm{j}]$
- This means that you need to at least check on each element at the very minimum
- Complexity is at least:
- And you could end up checking each element against every other element
- Complexity could be as bad as:

The big question is: How close to $O(n)$ can you get?

Sorting: The Big Picture

Given n comparable elements in an array, sort them in an increasing order.

Simple algorithms: $\mathrm{O}\left(n^{2}\right)$	Fancier algorithms: $\mathrm{O}(n \log n)$	Comparison lower bound: $\Omega(n \log n)$	Specialized algorithms: $\mathrm{O}(n)$	Handling huge data sets

Selection Sort: idea

1. Find the smallest element, put it $1^{\text {st }}$
2. Find the next smallest element, put it $2^{\text {nd }}$
3. Find the next smallest, put it $3^{\text {rd }}$
4. And so on ...

Try it out: Selection Sort

- 31, 16, 54, 4, 2, 17, 6

Selection Sort: Code

```
void SelectionSort (Array a[0..n-1]) {
    for (i=0; i<n; ++i) {
            j = Find index of
                            smallest entry in a[i..n-1]
    Swap(a[i],a[j])
    }
}
```


Runtime:

worst case

 best caseaverage case

Bubble Sort Idea

- Take a pass through the array
- If neighboring elements are out of order, swap them.
- Take passes until no swaps needed.

Try it out: Bubble Sort

- 31, 16, 54, 4, 2, 17, 6

Bubble Sort: Code

Bubble Sort: Code

```
void BubbleSort (Array a[0..n-1]) {
    swapPerformed = 1
    while (swapPerformed) {
        swapPerformed = 0
        for (i=0; i < --n; i++) {
        if (a[i+1] < a[i]) {
                            Swap(a[i],a[i+1])
                            swapPerformed = 1
                }
    }
    }
}
```

Can you do even better ?

Bubble Sort: Code

```
void BubbleSort (Array a[0..n-1]) {
    m = n-1
    while (m > 0) {
            lastSwap = 0
            for (i=0; i<m; i++) {
            if (a[i+1] < a[i]) {
                                    Swap(a[i],a[i+1])
                                    lastSwap = i
                }
            }
        m = lastSwap
    }
}
```


Insertion Sort: Idea

1. Sort first 2 elements.
2. Insert $3^{\text {rd }}$ element in order.

- (First 3 elements are now sorted.)

3. Insert $4^{\text {th }}$ element in order

- (First 4 elements are now sorted.)

4. And so on...

How to do the insertion?

Suppose my sequence is:

$$
16,31,54,78,32,17,6
$$

And I've already sorted up to 78. How to insert 32?

Example: Insertion Sort

\bigcirc													
1	2	3	8	7	9	10	12	23	18	15	16	17	14
\bigcirc													
1	2	3	7	8	9	10	12	23	18	15	16	17	14
\bigcirc													
1	2	3	7	8	9	10	12	18	23	15	16	17	14
\sim													
1	2	3	7	8	9	10	12	18	15	23	16	17	14
\bigcirc													
1	2	3	7	8	9	10	12	15	18	23	16	17	14
\sim													
1	2	3	7	8	9	10	12	15	18	16	23	17	14
\sim													
1	2	3	7	8	9	10	12	15	16	18	23	17	14

Example: Insertion Sort

Try it out: Insertion sort

- 31, 16, 54, 4, 2, 17, 6

Insertion Sort: Code

```
void InsertionSort (Array a[0..n-1]) {
    for (i=1; i<n; i++) {
        for (j=i; j>0; j--) {
        if (a[j] < a[j-1])
        Swap(a[j],a[j-1])
        else
                            break
    }
}
Runtime:
                                    worst case
                                    best case
                                    average case as with a binary heap.

\section*{Sort with AVL Tree}

Runtime:

\section*{Try it out: Sort with AVL Tree}
- 31, 16, 54, 4, 2, 17, 6

\section*{HeapSort}

Runtime:

\section*{HeapSort}


Shove all elements into a priority queue, take them out smallest to largest.

\section*{Try it out: HeapSort}
- 31, 16, 54, 4, 2, 17, 6

\section*{In Place HeapSort}
1. Build Heap
2. Repeat:
- DeleteMax and place it on the last leaf

Note: array entries are numbered 1..n!


\section*{HeapSort: Step 1}

\section*{private void buildHeap(int a[ ], int n) \{} for ( int \(\mathrm{i}=\mathrm{n} / 2\); \(\mathrm{i}>0\); \(\mathrm{i}-\mathrm{o}\) ) \{ percolateDown(i, a[i]);
\}
\}
Lecture 8

Note: need to place the MAXIMUM element on the root

\section*{HeapSort: Step 2}
private void sort(int a[], int n) \{ buildHeap(a, n); while ( \(n>0\) ) \{ \(a[n--]=a[1] ;\)
DeleteMax(a, n);
\}
\}```

