
CSE 373

Data Structures & AlgorithmsData Structures & Algorithms

Lecture 09

Binary Heaps (Part II)

10/21/2009 CSE 373 Fall 2009 -- Dan Suciu 1

The Midterm

• Friday, October 23, 12:30, in class

• Closed books, closed notes• Closed books, closed notes

• Topics covered:

– Asymptotic complexity, Big-O, stacks, queues,

trees, AVL trees, B trees

10/21/2009 CSE 373 Fall 2009 -- Dan Suciu 2

Six Questions on the Midterm

1. Compute asymptotic complexities of programs

2. Write programs with better asymptotic

complexities

3. Big O notation basics3. Big O notation basics

4. Stacks and Queues

5. Trees: general concepts

6. Search trees (AVL, B): insertion, deletion

10/21/2009 CSE 373 Fall 2009 -- Dan Suciu 3
Speed and familiarity with the material are critical

Building a Heap

• At every point, the new item may need to

percolate all the way through the heap

• Adding the items one at a time is O(n log n) in • Adding the items one at a time is O(n log n) in

the worst case (what is the worst case?)

• Today we get clever and do it in O(n)

10/21/2009 4CSE 373 Fall 2009 -- Dan Suciu

BuildHeap: Floyd’s Method

5 11 3 10 6 9 4 8 1 7 212

Add elements arbitrarily to form a complete tree.
Pretend it’s a heap and fix the heap-order property!

12

27184

96103

115

12

10/21/2009 5CSE 373 Fall 2009 -- Dan Suciu

Buildheap pseudocode

private void buildHeap() {

for (int i = currentSize/2; i > 0; i--) {

percolateDown(i);percolateDown(i);

}

}

10/21/2009 6CSE 373 Fall 2009 -- Dan Suciu

BuildHeap: Floyd’s Method

115

12

27184

96103

115

10/21/2009 7CSE 373 Fall 2009 -- Dan Suciu

67184

92103

115

12

67184

10/21/2009 8CSE 373 Fall 2009 -- Dan Suciu

67184

92103

115

12

671084

9213

115

12

67184 671084

10/21/2009 9CSE 373 Fall 2009 -- Dan Suciu

67184

92103

115

12

671084

9213

115

12

67184 671084

1171084

9613

25

12

10/21/2009 10CSE 373 Fall 2009 -- Dan Suciu

67184

92103

115

12

671084

9213

115

12

67184 671084

1171084

9613

25

12

1171084

9653

21

12

10/21/2009 11CSE 373 Fall 2009 -- Dan Suciu

Finally…

23

1

11710812

9654

10/21/2009 12CSE 373 Fall 2009 -- Dan Suciu

Note they’re not the same

23

1

23

1

O(N log N) O(N)

11710812

9654

11710812

9645

But that doesn’t matter, they’re both heaps

Floyd’s method runs in time O(n): read the proof in Ch. 6.3.410/21/2009 13CSE 373 Fall 2009 -- Dan Suciu

Facts about Heaps

• Observations:

– Inserts are at least as common as deleteMins

– Finding a child/parent index is a multiply/divide by two

– Each percolate step looks at only two new nodes– Each percolate step looks at only two new nodes

• Operations jump widely through the heap

• Realities:

– Division/multiplication by powers of two are equally fast

– With huge data sets, disk accesses dominate

– Looking at only two new pieces of data: bad for cache!

10/21/2009 14CSE 373 Fall 2009 -- Dan Suciu

32

1

7

Extension: d-Heaps

• Each node has d children

• Still representable by array

• Good choices for d:

– choose a power of two

– fit one set of children in a

How does height
compare to bin
heap? (less)

This example has
height 2, vs. 3 for
bin

15

4

9654 8 1012 11
– fit one set of children in a

cache line/memory page/disk

block
2 7 3 8 5 121110 6 91

10/21/2009 CSE 373 Fall 2009 -- Dan Suciu

Operations on d-Heap

• Insert: runtime =

• deleteMin: runtime =

depth of tree

decreases,

O(logd n) worst

percolateDown

16
10/20/2009 16

• deleteMin: runtime =

Does this help insert or deleteMin more?

percolateDown

requires comparison

to find min,

O(d logd n), worst/ave

10/21/2009 CSE 373 Fall 2009 -- Dan Suciu

