
CSE 373

Data Structures & AlgorithmsData Structures & Algorithms

Lecture 08

Binary Heaps (Part I)

10/17/2009 CSE 373 Fall 2009 -- Dan Suciu 1

Recall Queues

• FIFO: First-In, First-Out

• Some contexts where this seems right?

10/19/2009 2

• Some contexts where some things should be

allowed to skip ahead in the line?

Queues that Allow Line Jumping

• Need a new ADT

• Operations: Insert an Item,

Remove the “Best” Item

10/19/2009 3

insert deleteMin

6 2
15 23

12 18
45 3 7

Priority Queue ADT

1. PQueue data : collection of data with priority

2. PQueue operations

– insert

10/19/2009 4

– deleteMin

3. PQueue property: for two elements in the

queue, x and y, if x has a lower priority value

than y, x will be deleted before y

Applications of the Priority Queue

• Select print jobs in order of decreasing length

• Forward packets on routers in order of urgency

• Select most frequent symbols for compression

• Sort numbers, picking minimum first

10/19/2009 5

• Sort numbers, picking minimum first

• Anything greedy

Potential Implementations

insert deleteMin

Unsorted list (Array)

Unsorted list (Linked-List)

10/19/2009 6

Unsorted list (Linked-List)

Sorted list (Array)

Sorted list (Linked-List)

Binary Search Tree

AVL Trees

Potential Implementations

insert deleteMin

Unsorted list (Array) O(1) O(n)

Unsorted list (Linked-List) O(1) O(n)

10/19/2009 7

Unsorted list (Linked-List) O(1) O(n)

Sorted list (Array) O(n) O(1)*

Sorted list (Linked-List) O(n) O(1)

Binary Search Tree O(n) worst O(n) worst

AVL Trees O(log n) O(log n)

Recall From Lists, Queues, Stacks

• Use an ADT that corresponds to your needs

• The right ADT is efficient, while an overly
general ADT provides functionality you aren’t
using, but are paying for anyways

10/19/2009 8

using, but are paying for anyways

• Heaps provide O(log n) worst case for both
insert and deleteMin, O(1) average insert

Binary Heap Properties

1. Structure Property

2. Ordering Property

10/19/2009 9

Tree Review

A

B C

root(T):

leaves(T):

children(B):

Tree T

10/19/2009 10

ED F G

IH

LJ MK N

parent(H):

siblings(E):

ancestors(F):

descendents(G):

subtree(C):

More Tree Terminology

A

B C

depth(B):

height(G):

degree(B):

Tree T

10/19/2009 11

ED F G

IH

LJ MK N

degree(B):

branching factor(T):

Brief interlude: Some Definitions:

A Perfect binary tree – A binary tree with all
leaf nodes at the same depth. All internal
nodes have 2 children.

11
height h
2h+1 – 1 nodes

10/19/2009 12

2592

215

11

307 101 3

16

13 19 22

2h+1 – 1 nodes
2h – 1 non-leaves
2h leaves

Heap Structure Property

• A binary heap is a complete binary tree.

Complete binary tree – binary tree that is
completely filled, with the possible exception of
the bottom level, which is filled left to right.

Examples:

10/19/2009 13

Representing Complete

Binary Trees in an Array

GED

CB

A

F

From node i:

left child:
right child:

7

1

2 3

4 5 6

10/19/2009 14

GED

J KH I

F

L
right child:
parent:

98 10 11 12

A B C D E F G H I J K L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

implicit (array) implementation:

Why this approach to storage?

10/19/2009 15

Heap Order Property

Heap order property: For every non-root

node X, the value in the parent of X is less

than (or equal to) the value in X.

10

10/19/2009 16

1530

8020

10

996040

8020

10

50 700

85

not a heap

Heap Operations

• findMin:

• insert(val): percolate up.

• deleteMin: percolate down.

10

10/19/2009 17

996040

8020

10

50 700

85

65

Heap – Insert(val)

Basic Idea:

1. Put val at “next” leaf position

2. Percolate up by repeatedly exchanging node

until no longer needed

10/19/2009 18

until no longer needed

Insert: percolate up

996040

8020

10

50 700

85

65 15

10/19/2009 19

992040

8015

10

50 700

85

65 60

Insert Code (optimized)

) void insert(Object o)
{

assert(!isFull());

size++;

newPos =

int percolateUp(int hole,
Object val) {

while (hole > 1 &&
val < Heap[hole/2])

Heap[hole] = Heap[hole/2];
hole /= 2;

}

10/19/2009 20

}

percolateUp(size,o)
;

Heap[newPos] = o;

}

}
return hole;

}

runtime:

(Code in book)

Heap – Deletemin

Basic Idea:

1. Remove root (that is always the min!)

2. Put “last” leaf node at root

10/19/2009 21

2. Put “last” leaf node at root

3. Find smallest child of node

4. Swap node with its smallest child if needed.

5. Repeat steps 3 & 4 until no swaps needed.

DeleteMin: percolate down

996040

1520

10

50 700

85

65

10/19/2009 22

50 700 65

996040

6520

15

50 700

85

DeleteMin Code (Optimized)

Object deleteMin() {

assert(!isEmpty());

returnVal = Heap[1];

size--;

newPos =

percolateDown(1,

Heap[size+1]);

int percolateDown(int hole,
Object val) {

while (2*hole <= size) {
left = 2*hole;
right = left + 1;
if (right ≤ size &&

Heap[right] < Heap[left])
target = right;

else

10/19/2009 23

Heap[size+1]);

Heap[newPos] =

Heap[size + 1];

return returnVal;

}

else
target = left;

if (Heap[target] < val) {
Heap[hole] = Heap[target];
hole = target;

}
else
break;

}
return hole;

}

runtime:

(code in book)

0 1 2 3 4 5 6 7 8

Insert: 16, 32, 4, 69, 105, 43, 2

10/19/2009 24

(On the white board…)

More Priority Queue Operations

• decreaseKey
– given a pointer to an object in the queue, reduce its priority value

Solution: change priority and ____________________________

• increaseKey

10/19/2009 25

• increaseKey
– given a pointer to an object in the queue, increase its priority value

Solution: change priority and _____________________________

Why do we need a pointer? Why not simply data value?

More Priority Queue Operations

• Remove(objPtr)

– given a pointer to an object in the queue,
remove the object from the queue

Solution: set priority to negative infinity,

10/19/2009 26

Solution: set priority to negative infinity,
percolate up to root and deleteMin

• FindMax

Facts about Heaps
Observations:

• Finding a child/parent index is a multiply/divide by two

• Operations jump widely through the heap

• Each percolate step looks at only two new nodes

• Inserts are at least as common as deleteMins

10/19/2009 27

• Inserts are at least as common as deleteMins

Realities:

• Division/multiplication by powers of two are equally fast

• Looking at only two new pieces of data: bad for cache!

• With huge data sets, disk accesses dominate

Priority Queue Operations

• insert(obj)

• deletemin(obj)

• decreaseKey(objPtr, amount)

• increaseKey(objPtr, amount)• increaseKey(objPtr, amount)

• remove(objPtr)

• findMax()

• expandHeap()

• buildHeap(objList)

Building a Heap

5 11 3 10 6 9 4 8 1 7 212

12 5 5

12 1112

12

115

3

1012

115

3

Building a Heap

5 11 3 10 6 9 4 8 1 7 212

3 3

9111012

65

12

911105

64

Building a Heap

5 11 3 10 6 9 4 8 1 7 212

3 1

812

911105

64

10812

91145

63

Building a Heap

5 11 3 10 6 9 4 8 1 7 212

1

11710812

9645

23

Building a Heap

• At every point, the new item may need to

percolate all the way through the heap

• Adding the items one at a time is O(n log n) in • Adding the items one at a time is O(n log n) in

the worst case (what is the worst case?)

• Next lecture we get clever and do it in O(n)

