CSE 373
Data Structures & Algorithms

Lecture O/
B-Trees

10/14/2009 CSE 373 Fall 2009 -- Dan Suciu

Announcements

e Homework 2 due on Friday

— Turning hard copy at the beginning of class OR
— Submit online before 12:30

e Midterm next Friday
— Start reading the book !!!

Time Complexity

Suppose we had very many pieces of data
(as we would in a database),
such as n =230 = 10°.

How many (worst case) hops through the tree
to find a node?

e BST List tree: 10°

log,, 10° =
* AVL 1.44 log, 230 = 43

Space Complexity

What is in a tree node? In an object?

Node:
Object obj;
Node left;
Node right;

Object:

Suppose the data is 1KB. Key key;
...data...

How much space does the tree take?

10°KB = 1TB
How much of the data can live

1/1000t of data

CPU

Cycles to access:

Registers 1
L1 Cache 2
L2 Cache 30
Main memory 250

> Disk

Random: 30,000,000
Streamed: 5000

Minimizing random disk access

Almost all of our data structure is on disk.

Thus, hopping around in a tree amounts to random
accesses to disk.

They are really, really painful.

How can we address this problem?

Big branching factor

Implemented using arrays of children at each node
Store keys in nodes, data at leaves

M-ary Search Tree

Suppose we devised a search tree with branching
factor M: 0.

70 N7s N/ N7 N\

Complete tree has height:
O(logyn) = O(logyn/log,M)

Hops for find.: O(log,,n)
M

Runtime of find: O(log,M * logyn) = O(log,n)

Binary search at a node takes O(log,M) time.
w00 Asymptotically same as AVL, but better disk access

B Trees
e Each internal still has (up to) M-1 keys:

e Order property:
— subtree between two keys x and y M=7
contain leaves with values v 371202
suchthatx<v<y

— Note the “<”

e Leaf nodes contain
up to L sorted keys.

X<3 3SX<T7 7<x<12 12<x<2121<Xx

B Tree Structure Properties

Root (special case)
— has between 2 and M children (or could be a leaf)

Internal nodes Nodes are at least Y2 full
— store up to M-1 keys
— have between [M/2] and M children

Leaf nodes

— where data Is stored Leaves are at least ¥ full
_ contain between [L/2] and L data items

The tree is perfectly balanced !

10/14/2009 CSE 373 Fall 2009 -- Dan Suciu 9

B Tree: Example

B Tree with M = 4 (# pointers in internal node)
andL=5 (# data items in leaf)

Data objects... 1§44 1
which I'll ignore

AT R

/-B

5(1I|

1,°ABl.. |6 12 (20 |27 |34 44 |50
2, GH.. |8 14 |20 |28 |38 47 |60 All leaves
4. XY]. |9 16 (24 |32 |39 49 |70 at the same
10 17 41
14 depth

Definition for later: “neighbor” is the next sibling to the left or right.

10/14/2009 CSE 373 Fall 2009 -- Dan Suciu 10

Disk Friendliness

What makes B trees disk-friendly?

1. Many keys stored in a node
e All brought to memory/cache in one disk access.

2. Internal nodes contain only keys;
Only leaf nodes contain keys and actual data

e Much of tree structure can be loaded into memory
irrespective of data object size

e Data actually resides in disk

10/14/2009 CSE 373 Fall 2009 -- Dan Suciu

11

B Trees in Practice

e Typical order: M=200. Typical fill-factor: 67%.
— average fanout = 133

e Typical capacities:
— Height 4: 1334 =312,900,700 records
— Height 3: 1333 = 2,352,637 records

e Can often hold top levels in buffer pool:
— Level 1 = 1 page = 8 Kbytes
— Level 2= 133 pages= 1 Mbyte
— Level 3 =17,689 pages = 133 MBytes

B trees vs. AVL trees

Suppose again we have n = 239 = 10° items:

 Depth of AVL Tree
43

 Depth of B Tree with M = 256, L = 256

Log,,5 10°=4.3

So let’s see how we do this...

13

Building a B Tree with Insertions

The empty B-Tree

M=

10/14/2009

3

Insert(3))

L =3

Insert(18))

18

Insert(14))

CSE 373 Fall 2009 -- Dan Suciu

14

18

14

14

18

M=

10/14/2009

3

Insert(SOz

L =3

14 >

18

30

CSE 373 Fall 2009 -- Dan Suciu

18

14

30

15

T rh i

Insert(322 Insert(362
14 | |30 14 | |30 14| 30| |36
32
18 § 32
Insert(15)
3 18 | |32
M=3 | =3 14| (30| |36
15

10/14/2009 CSE 373 Fall 2009 -- Dan Suciu 16

!18!32!
3 18 | | 32

!18!32!
3 18 | | 32

10/14/2009

14| 130 |36 | Insertdd) 11120136
15 15
16 l
1e I18 32
nl
«~— |3 ||15] |18/ |32
|15 I |32 I 14|16 |30 (36

CSE 373 Fall 2009 -- Dan $ueid

17

[
w

|
w

14

16

o] |
! 15 I ! 32
3 15 18| |32

30

36

Insert(12,40,45,38)
>
| H)I
3 5

1

12

10/14/2009

16

14

CSE 373 Fall 2009 -- Dan Suciu

;

o] |
! 32§40
18 | |32

40

30

36

45

38

18

Insertion Algorithm:

The Overflow Step

1111 HEEE
—)

K1IK2IK3IK4IK5I KlIKzl |(4I|(5I

M=5

Insertion

Insert the key in its leaf in
sorted order

If the leaf ends up with L+1
items, overflow!

Split the leaf into two nodes:

[(L+2)/2 | smaller keys
L(L+1)/2]1arger keys

Add the new child to the parent

If the parent ends up with M+1
children, overflow!

Algorithm

3. Ifaninternal node ends up with
M+1 children, overflow!
— Split the node into two nodes:
[(M+1)/2]] children with smaller keys
| (M+1)/2] children with larger keys
— Add the new child to the parent
— If the parent ends up with M+1
items, overflow!

4. 1Tt theroot ends up with M+1 |
children, splitit in two, and
create new root with two
children

This makes the tree deeper!

And Now for Deletion...

12

16

14

M=3

10/14/2009

Delete(32)

o] |
! 15 I ! 32 40
3 15 18 | | 32

40

!15

2,

40

30

36

45

12

16

30

38

45

38

14

L=3

CSE 373 Fall 2009 -- Dan Suciu

21

18 I Delete(15) 18 I
>
!15 I !36 40! !16 I !36 40!
3 | |15 18| |36 3 | |16 18 | |36

40 40

12 | |16 30| (38| |45 12 30| (38| |45

14 14

Are we okay?

M=3 | =3 Dang, not half ful Are you using that 147
Can | borrow it?

10/14/2009 CSE 373 Fall 2009 -- Dan Suciu 22

12

14

M=3

10/14/2009

5] 1
!16] !36 40!
3 16 18 | |36

40

;

30

38

45

18] |
>
3 14 18| |36

40

12

16

30

38

45

L=3

CSE 373 Fall 2009 -- Dan Suciu

23

12

16

M=3

10/14/2009

L

6] |
! 14 I ! 36§ 40 !
3 14 18 | |36

40

30

38

45

3

Delete(16)
>

|14
y

3

14

ol]
(11

12

18

36

40

30

38

45

Are you using that 127

CSE 373 Fall 2009 -- Dan Suciu

24

o] |
I]flf‘l !36 40!

3 14 18|36 | |40
12 30| (38| |45
M=3 L=3

10/14/2009

CSE 373 Fall 2009 -- Dan Suciu

BN
01

3

18

36

40

12

30

38

45

14

Are you using the node18/307

25

! (111 a("H '

18|36 | |40

12 30| (38| |45 12 | |30 38| |45

14 14

M=3 L=3

10/14/2009 CSE 373 Fall 2009 -- Dan Suciu 26

Delete(14
36 I (14) 36 I
!18] !40] !18] !40]
3 18 36| (40 3 18 36| |40

12 | |30 38| |45 12 | |30 38| |45

14

M=3 L=3

10/14/2009 CSE 373 Fall 2009 -- Dan Suciu 27

Delete(18
36 I elete(18) 36 I
!18 I !40 | !18 i !40 i
3 | |18 36 | |40 3 | |30 36 | |40

12 | |30 38| |45 12 38| |45

M=3 L=3

10/14/2009 CSE 373 Fall 2009 -- Dan Suciu 28

Ii\ﬁi I 3!)|/‘I%!40I I

!18
3 30 36| |40

12 38| |45 12 38| |45

30

M=3 L=3

10/14/2009 CSE 373 Fall 2009 -- Dan Suciu

12
30

M=3

10/14/2009

L=3

38

45

CSE 373 Fall 2009 -- Dan Suciu

!

a &l - L
!] !40] !36 0
3 36 | |40 3 36

40

12

38

45

30

30

E

M=3

10/14/2009

2

3 36| [40
12| |38 |45
30
L=3

CSE 373 Fall 2009 -- Dan Suciu

v

3 36| (40
12| |38 |45
30

31

Deletion Algorithm:
Rotation Step

d BB HEEE

lK3IK4 K1IK2I K4IK5I

M=5 Thisisleft rotation. Similarly, right rotation

Deletion Algorithm:

Merging Step
HEOEN P10 N
—

PO EEEE

smaller

M=5

Deletion Algorithm

1. Remove the key from its leaf

2. If the leaf ends up with fewer
than|[L/2]items, underflow!

— Try a left rotation

— If not, try a right rotation

— If not, merge, then check the
parent node for underflow

Deletion Slide Two

3. If aninternal node ends up with fewer
than [M/2] children, underflow!
— Try a left rotation
— If not, try a right rotation

— If not, merge, then check the parent node
for underflow

4. |If the root ends up with only one child,
make the child the new root of the tree \

This reduces the
height of the tree!

Complexity

* Find: O(log,M log,,n)
* |nsert:
— find: O(log,M logyn)
— Insert in leaf:
— split/propagate up: OM)
O(M log,, n)

e O(M) costs are negligible, it’s disk that kills us

