CSE 373

Data Structures \& Algorithms

Lecture 05
Trees: BST
(Weiss 4.1, 4.2, 4.3)

Announcements

Homework 2

- Posted
- Due next Friday
- Turn-in in class OR drop box

Di-Graphs (Directed Graphs)

- Nodes: A,B,...
- Edges: $\mathrm{A} \rightarrow \mathrm{B}, \ldots$
- Paths from A to E :

A, B, E
A,B,D,E
$A, B, F, A, B, F, A, B, E$

- Cycle: A,B,F,A
- Lengh of a path = \# of edges

What is a "tree" ?

- "A tree is a graph such that...."
- How would you define a tree ?

Directed Acyclic Graph (DAG)

Definition: A DAG is a graph without cycles

Not a tree yet...

Trees

- A tree is a graph with a distinguished node A called root such that for any other node X, there exists a unique path from A to X
- See book for: children, parent, sibling, leaf, depth, height

Trees

A recursive definition:

- A tree consists of a node (called the root) together with 0 or more (sub)trees $\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{k}}$

Trees

Please read these definitions in the book:

- Parent, children, leaves
- Path, length of a path (= \# of edges)
- Depth of a node n (length of path root $\rightarrow \mathrm{n}$)
- Height of a node n (largest length $n \rightarrow$ leaf)
- Height of the tree

Tree Calculations Example

How high is this tree?

$$
\begin{gathered}
\text { height }(B)=1 \\
\operatorname{height}(C)=4 \\
\text { so height(A) }=5
\end{gathered}
$$

Quiz

- If a tree has n nodes, how many edges does it have?
- If a tree has n nodes, how many leaves can it have?

Binary Trees

Recursive definition

- A binary tree is
- Either an empty tree
- Or a node plus a left (sub)tree and a right (sub)tree
- Representation:

Data	
left pointer	right pointer

Binary Tree: Representation

Subtle Distinction

If a node has a single child we distinguish between the case when it is a left child and when it is a right child

Left child only
Right child only
Not a "binary" tree

Binary Tree: Special Cases

Complete Tree
Every level, except possibly the last, is completely filled, and all nodes ar as fartieft as possible.

Full Tree
Every non-leaf Full+complete has two children

"List" Tree

Perfect Tree

Tree Traversals

An expression tree:
A traversal is an order for visiting all the nodes of a tree

Four types:

- Pre-order Root, left-subtree, right-subtree

- In-order: Left-subtree, root, right-subtree
- Post-order: Lef- subtree, right-subtree, root
- Breadth-first: left-right, top-down

Inorder Traversal

void traverse (BNode t) \{ if (t ! = NULL) traverse (t.left); process t.element; traverse (t.right); \}

Tree Traversals

- Preorder: ABDECFGIJH
- Inorder:

DBEAIGJFHC

- Postorder: DEBIJGHFCA
- Breadth-first: ABCDEFGHIJ

A binary tree is complete if and only if all nodes in breadth-first order are present

Quiz

- If a binary tree has n nodes, what can its height be ?
- If a binary tree has n nodes, how many leaves can it have ?
- If the binary tree is full and has n nodes, how many leaves does it have ?

ADTs Seen So Far

- Stack
- push, pop, top
- Queue
-enqueue, dequeue, front

The Dictionary ADT (aka Map ADT)

- Data: insert(joe55, "Joe Doe")
- a set of
(key, value) pairs

rs	Key	Value
	joe55	"Joe Doe"
find(ericm6)	ericm6	"Eric McCambridge"
	stemcel	"Josh Barr"
ericm6	.	

- Operations:
- Insert (key, value)
- Find (key)
- Remove (key)

A Modest Few Uses

- Sets
- Dictionaries
- Networks : Router tables
- Operating systems : Page tables
- Compilers
: Symbol tables
- Anytime you want to store information according to some key and be able to efficiently retrieve it

Probably the most widely used ADT!

Implementation

	Insert	Find	Delete
Unsorted linked lists			
Unsorted array			
Sorted array			

What are the asymptotic running times ?

Implementation

	Insert	Find	Delete
Unsorted linked lists	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$
Unsorted array	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$
Sorted array	$\mathrm{O}(\log (\mathrm{n})+\mathrm{n})$	$\mathrm{O}(\log n)$	$\mathrm{O}(\log (n)+n)$

What limits the performance?

Binary Search Tree Data Structure

A Binary Search Tree (BST) is a binary tree with the following ordering property:

- For every node n with key k :
- all keys in left subtree are smalle? than k
- all keys in the right subtree larger than k

Comparison, equality testing

Example and Counter-Example

Find in BST, Recursive

$\Theta($ depth $)=\Theta(n)$ worst, $\Theta(\log n)$ avg

Find in BST, Iterative

```
Node Find(Object key,Node root)
    {
    while (root != NULL &&
                root.key != key) { if
    (key < root.key)
        root = root.left;
        else
            root = root.right;
    }
    return root;
}
```


Insert in BST

Insert(13)
Insert(8)
Insert(31)

Insertions happen only
at the leaves - easy!

Runtime:

$\mathrm{O}($ depth $)=\mathrm{O}(n)$ worst, $\mathrm{O}(\log n)$ avg

The Height of a BST

- Important question: if a BST has n nodes, what is its height?
- Best case: O(log n)
- Worst case: O(n)
- Simpler question: if we insert n keys into an empty BST, what is its height ?

Insertions Only

- Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST.

Runtime depends on the order!

- in given order

$$
\Theta\left(n^{2}\right)
$$

- in reverse order

$$
\Theta\left(n^{2}\right)
$$

- median first, then left median, right median, etc.

5, 3, 7, 2, 1, 6, 8, 9 better: $n \log n$

BuildTree for BST

Insert n keys into an empty BST = "bulk insertion"

- Example: 1, 2, 3, 4, 5, 6, 7, 8
- What we if could somehow re-arrange them
- median first, then left median, right median, etc.
$-5,3,7,2,1,4,8,6,9$
- What tree does that give us?
- What big-O runtime?
$O(N \log N)$

The Height of a BST after Insertions Only

- Bulk insertion of n keys \rightarrow height $=\mathrm{O}(\log \mathrm{n})$
- Regular insertion of n keys:
- Worst case O(n)
- Best case O(log n)
- Average case $\mathrm{O}(\log n)$ READ THE BOOK

FindMin/FindMax

- Find minimum
- Find maximum

Deletion in BST

Why might deletion be harder than insertion?

Lazy Deletion

Instead of physically deleting nodes, just mark them as deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag
- extra memory for deleted flag
- many lazy deletions slow finds
- some operations may have to be modified (e.g., min and max)

Non-lazy Deletion

- Removing an item disrupts the tree structure.
- Basic idea: find the node that is to be removed. Then "fix" the tree so that it is still a binary search tree.
- Three cases:
- node has no children (leaf node)
- node has one child
- node has two children

Non-lazy Deletion - The Leaf Case

Delete(17)

Easy - prune

Deletion - The One Child Case

Delete(15)

Pull up child - will this always work?

Deletion - The Two Child Case

Delete(5)

What can we replace 5 with?
A value guaranteed to be between the two subtrees!

- succ from right subtree
- pred from left subtree

How long do these operations take? (find, insert, delete)

Deletion - The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees!

Options:

- succ from right subtree: findMin(t.right)
- pred from left subtree : findMax(t.left)

Now delete the original node containing succ or pred

- Leaf or one child case - easy!

Finally...

Original node containing 7 gets deleted

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf.
For binary tree of height h :

- max \# of leaves:
2^{h}
- max \# of nodes: $\quad 2^{(h+1)}-1$
- min \# of leaves: 1
- min \# of nodes: $\quad h+1$

We're not going to do better than $\log (n)$ height,

