CSE 373

Data Structures \& Algorithms Guest Lecturer: Sean Shih-Yen Liu

Lecture 04

Asymptotic Analysis (II)

Announcements

- Homework 1 due tomorrow, by 11:45pm
- Homework 2 is posted on the website, due next Friday at the beginning class. You can turn in in class or submit online.

Some Notes on Notation

Sometimes you'll see (e.g., in Weiss)

- $h(n)=O(f(n))$
or
- $h(n)$ is $O(f(n))$

These are equivalent to

- $h(n) \in O(f(n))$

Big-O: Common Names

- constant: $\mathrm{O}(1)$
- logarithmic: $O(\log n) \quad\left(\log _{k} n, \log n^{2} \in O(\log n)\right)$
- linear: O(n)
- log-linear: O(n log n)
- quadratic: $O\left(n^{2}\right)$
- cubic: $O\left(n^{3}\right)$
- polynomial: $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right) \quad$ (k is a constant)
- exponential: $\mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right)$
- hyperexponential:
$\mathrm{O}\left(2^{2^{2^{2}}}\right.$) (a tower of n exponentials

Meet the Family

- $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
$-o(f(n))$ is the set of all functions asymptotically strictly less than $f(n)$
- $\Omega(g(n))$ is the set of all functions asymptotically greater than or equal to $g(n)$
$-\omega(g(n))$ is the set of all functions asymptotically strictly greater than $g(n)$
- $\theta(f(n))$ is the set of all functions asymptotically equal to f (n)

Meet the Family, Formally

- $h(n) \in O(f(n))$ iff

There exist $c>0$ and $n_{0}>0$ such that $h(n) \leq c f(n)$ for all $n \geq n_{0}$

- $h(n) \in o(f(n))$ iff

There exists an $n_{0}>0$ such that $h(n)<c f(n)$ for all $c>0$ and $n \geq n_{0}$

- This is equivalent to: $\quad \lim _{n \rightarrow \infty} h(n) / f(n)=0$
- $\quad h(n) \in \Omega(g(n))$ iff

There exist $c>0$ and $n_{0}>0$ such that $h(n) \geq c g(n)$ for all $n \geq n_{0}$

- $\quad h(n) \in \omega(g(n))$ iff

There exists an $n_{0}>0$ such that $h(n)>c \mathrm{~g}(n)$ for all $c>0$ and $n \geq n_{0}$

- This is equivalent to: $\quad \lim _{n \rightarrow \infty} h(n) / g(n)=\infty$
- $h(n) \in \theta(f(n))$ iff
$h(n) \in O(f(n))$ and $h(n) \in \Omega(f(n))$
- This is equivalent to:
$\lim _{n \rightarrow \infty} h(n) / f(n)=c \neq 0$

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
O	\leq
Ω	\geq
θ	$=$
0	$<$
ω	$>$

Input Size

- Usually: length (in characters) of input
- Sometimes: value of input (if it is a number)

Complexity cases (revisited)

- Worst-case complexity: max \# steps algorithm takes on "most challenging" input of size \mathbf{N}
- Best-case complexity: min \# steps algorithm takes on "easiest" input of size \mathbf{N}
- Average-case complexity: avg \# steps algorithm takes on random inputs of size \mathbf{N}
- Amortized complexity: max total \# steps algorithm takes on M "most challenging" consecutive inputs of size N , divided by M (i.e., divide the max total by M).

Example

- Recall the function: find(x, v, n)
- Input size: n (the length of the array)
- $T(n)=$ "running time for size $n "$
- But $T(n)$ needs clarification:
- Worst case $T(n)$: it runs in at most $T(n)$ time for any x, v
- Best case $T(n)$: it takes at least $T(n)$ time for any x, v
- Average case T(n): average time over all v and x

Bounds vs. Cases

Two orthogonal axes:

- Bound Flavor
- Upper bound (O, o)
- Lower bound (Ω, ω)
- Asymptotically tight (θ)
- Analysis Case
- Worst Case (Adversary), $T_{\text {worst }}(n)$
- Average Case, $T_{\text {avg }}(n)$
- Best Case, $T_{\text {best }}(n)$
- Amortized, $T_{\text {amort }}(n)$

One can estimate the bounds for any given case.

Example: Upper Bound

Claim: $n^{2}+100 n=O\left(n^{2}\right)$
Proof: Must find c, n^{\prime} such that for all $n>n^{\prime}$,

$$
n^{2}+100 n \leq c n^{2}
$$

Let's try setting $c=2$. Then

$$
\begin{aligned}
& n^{2}+100 n \leq 2 n^{2} \\
& 100 n \leq n^{2} \\
& 100 \leq n
\end{aligned}
$$

So we can set $n^{\prime}=100$ and reverse the steps above.

Using a Different Pair of Constants

Claim: $n^{2}+100 n=O\left(n^{2}\right)$
Proof: Must find c, n^{\prime} such that for all $n>n^{\prime}$,

$$
n^{2}+100 n \leq c n^{2}
$$

Let's try setting $c=101$. Then

$$
\begin{aligned}
& n^{2}+100 n \leq 100 n^{2} \\
& n+100 \leq 101 n \\
& 100 \leq 100 n \\
& 1 \leq n
\end{aligned}
$$

$$
n+100 \leq 101 n \quad(\text { divide both sides by } \mathrm{n})
$$

So we can set $n^{\prime}=1$ and reverse the steps above.

Example: Lower Bound

Claim: $n^{2}+100 n=\Omega\left(n^{2}\right)$
Proof: Must find c, n^{\prime} such that for all $n>n^{\prime}$,

$$
n^{2}+100 n \geq c n^{2}
$$

Let's try setting $c=1$. Then

$$
\begin{aligned}
& n^{2}+100 n \geq n^{2} \\
& n \geq 0
\end{aligned}
$$

So we can set $n^{\prime}=0$ and reverse the steps above.
Thus we can also conclude $n^{2}+100 n=\theta\left(n^{2}\right)$

Conventions of Order Notation

Order notation is not symmetric: write $2 n^{2}+n=O\left(n^{2}\right)$ but never $O\left(n^{2}\right)=2 n^{2}+n$
The expression $O(f(n))=O(g(n))$ is equivalent to

$$
f(n)=O(g(n))
$$

The expression $\Omega(f(n))=\Omega(g(n))$ is equivalent to

$$
f(n)=\Omega(g(n))
$$

The right-hand side is a "cruder" version of the left:

$$
\begin{aligned}
& 18 n^{2}=O\left(n^{2}\right)=O\left(n^{3}\right)=O\left(2^{n}\right) \\
& 18 n^{2}=\Omega\left(n^{2}\right)=\Omega(n \log n)=\Omega(n)
\end{aligned}
$$

Which Function Dominates?

$$
\begin{array}{ll}
\mathrm{f}(\mathrm{n})= & \mathrm{g}(\mathrm{n})= \\
\mathrm{n}^{3}+2 \mathrm{n}^{2} & 100 \mathrm{n}^{2}+1 \\
\mathrm{n}^{0.1} & \log \mathrm{n} \\
\mathrm{n}+100 \mathrm{n}^{0.1} & 2 \mathrm{n}+101 \\
5 \mathrm{n}^{5} & \mathrm{n}! \\
\mathrm{n}^{-15} 2^{\mathrm{n}} / 100 & 1000 \mathrm{n}^{15} \\
8^{2 \log \mathrm{n}} & 3 \mathrm{n}^{7}+7 \mathrm{n}
\end{array}
$$

Question to class: is $\mathrm{f}=\mathrm{O}(\mathrm{g})$? Is $\mathrm{g}=\mathrm{O}(\mathrm{f})$?

Race I

$f(n)=n^{3}+2 n^{2}$ vs. $g(n)=100 n^{2}+1000$

Race II

$n^{0.1}$
 VS. $\log n$

Race III

$n+100 n^{0.1}$
 vs. $2 n+10 \log n$

Race IV

$5 n^{5}$

VS. n !

Race V

$n^{-15} 2^{n} / 100 \quad$ vs. $1000 n^{15}$

Race VI

$8^{2 \log (n)} \quad$ VS. $\quad 3 n^{7}+7 n$

$16 n^{3} \log _{8}\left(10 n^{2}\right)+100 n^{2}=O\left(n^{3} \log (n)\right)$

$$
\begin{aligned}
& 16 n^{3} \log _{8}\left(10 n^{2}\right)+100 n^{2} \\
& \Rightarrow 16 n^{3} \log _{8}\left(10 n^{2}\right) \\
& \Rightarrow n^{3} \log _{8}\left(10 n^{2}\right) \\
& \Rightarrow n^{3}\left[\log _{8}(10)+\log _{8}\left(n^{2}\right)\right] \\
& \Rightarrow n^{3} \log _{8}(10)+n^{3} \log _{8}\left(n^{2}\right) \\
& \Rightarrow n^{3} \log _{8}\left(n^{2}\right) \\
& \Rightarrow n^{3} 2 \log _{8}(n) \\
& \Rightarrow n^{3} \log _{8}(n) \\
& \Rightarrow n^{3} \log _{8}(2) \log (n) \\
& \Rightarrow n^{3} \log (n)
\end{aligned}
$$

- Eliminate low order terms
- Eliminate constant coefficients

Sums and Recurrences

Often the function $f(n)$ is not explicit but expressed as:

- A sum, or
- A recurrence

Need to obtain analytical formula first

Sums

$$
\begin{aligned}
& f(n)=1+2+\ldots+n=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}=O\left(n^{2}\right) \\
& f(n)=1+3+5+\ldots+(2 n-1)=\sum_{i=1}^{n}(2 i-1)=n^{2}=O\left(n^{2}\right) \\
& f(n)=1^{2}+2^{2}+\ldots+n^{2}=\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}=O\left(n^{3}\right) \\
& f(n)=1^{3}+2^{3}+\ldots+n^{3}=O(?) \\
& f(n)=1^{4}+5^{4}+9^{4}+\ldots+(4 n-3)^{4}=\sum_{i=1}^{n}(4 i-3)^{4}=O(? ?)
\end{aligned}
$$

More Sums

$$
f(n)=1+3+3^{2}+\ldots+3^{n}=\sum_{i=1}^{n} 3^{i}=\frac{3^{n+1}-1}{3-1}=O\left(3^{n}\right)
$$

Sometimes sums are easiest computed with integrals:

$$
\begin{aligned}
& f(n)=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}=\sum_{i=1}^{n} \frac{1}{i} \approx 1+\int_{1}^{n} \frac{1}{x} d x=1+\ln (n)-\ln (1)=O(\ln (n)) \\
& f(n)=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots+\frac{1}{n^{2}}=\sum_{i=1}^{n} \frac{1}{i^{2}} \approx 1+\int_{1}^{n} \frac{1}{x^{2}} d x=1+\frac{1}{1}-\frac{1}{n}=O(1)
\end{aligned}
$$

Recurrences

- $f(n)=2 f(n-1)+1, f(0)=T$
- Telescoping

$$
\begin{array}{rll}
\Rightarrow & f(n)+1=2(f(n-1)+1) & \\
f(n-1)+1=2(f(n-2)+1) & \times 2 \\
& f(n-2)+1=2(f(n-3)+1) & \times 2^{2} \\
\therefore(1)+1=2(f(0)+1) & \times 2^{n-1} \\
& f(1)+1=2(n)+1=2^{n}(f(0)+1)=2^{n}(T+1) \\
\Rightarrow & f(n) \\
\Rightarrow & f(n)=2^{n}(T+1)-1
\end{array}
$$

Recurrences

- Fibonacci: $f(n)=f(n-1)+f(n-2), f(0)=f(1)=1$
\Rightarrow try $f(n)=A c^{n}$ What is c ?

$$
A c^{n}=A c^{n-1}+A c^{n-2}
$$

$$
c^{2}-c-1=0
$$

$$
c_{1,2}=\frac{1 \pm \sqrt{1+4}}{2}=\frac{1 \pm \sqrt{5}}{2}
$$

$$
f(n)=A\left(\frac{1+\sqrt{5}}{2}\right)^{n}+B\left(\frac{1-\sqrt{5}}{2}\right)^{n}=O\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

Constants A, B can be determined from $f(0), f(1)$ - not interesting for us for the Big O notation

Recurrences

- $f(n)=f(n / 2)+1, f(1)=T$
- Telescoping:

$$
\begin{aligned}
& f(n)=f(n / 2)+1 \\
& f(n / 2)=f(n / 4)+1
\end{aligned}
$$

$$
f(2)=f(1)+1=T+1
$$

$\rightarrow \mathrm{f}(\mathrm{n})=\mathrm{T}+\log \mathrm{n}=\mathrm{O}(\log \mathrm{n})$

