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Announcements

• Homework 1 due tomorrow, by 11:45pm

• Homework 2 is posted on the website, due 

next Friday at the beginning class. You can 

turn in in class or submit online.turn in in class or submit online.
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Some Notes on Notation

Sometimes you’ll see (e.g., in Weiss)

• h(n) = O( f(n) )

oror

• h(n) is O( f(n) )

These are equivalent to

• h(n) ∈ O( f(n) )
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Big-O: Common Names

• constant: O(1)

• logarithmic:O(log n) (logkn, log n2 ∈ O(log n))

• linear: O(n)

• log-linear: O(n log n)• log-linear: O(n log n)

• quadratic: O(n2)

• cubic: O(n3)

• polynomial:O(nk) (k is a constant)

• exponential: O(cn)                      (c is a constant > 1)

• hyperexponential: (a tower of n exponentials
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Meet the Family

• O( f(n) ) is the set of all functions asymptotically less than 
or equal to f(n)

– o(f(n) ) is the set of all functions asymptotically 
strictly less than f(n)

• Ω( g(n) ) is the set of all functions asymptotically greater • Ω( g(n) ) is the set of all functions asymptotically greater 
than or equal to g(n)

– ω( g(n) ) is the set of all functions 
asymptotically strictly greater than g(n)

• θ( f(n) ) is the set of all functions asymptotically equal to f
(n)
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Meet the Family, Formally

• h(n) ∈ O( f(n) ) iff
There exist c>0 and n0>0 such that h(n) ≤≤≤≤ c f(n) for all n ≥ n0

• h(n) ∈ o(f(n)) iff
There exists an n0>0 such that h(n) < c f(n) for all c>0 and   n ≥ n0

– This is equivalent to:

• h(n) ∈ Ω( g(n) ) iff

lim ( )/ ( ) 0
n

h n f n
→∞

=

• h(n) ∈ Ω( g(n) ) iff
There exist c>0 and n0>0 such that h(n) ≥≥≥≥ c g(n) for all n ≥ n0

• h(n) ∈ ω( g(n) ) iff
There exists an n0>0 such that h(n) > c g(n) for all c>0 and n ≥ n0 

– This is equivalent to:

• h(n) ∈ θ( f(n) ) iff
h(n) ∈ O( f(n) ) and h(n) ∈ Ω(f(n) )
– This is equivalent to:
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Big-Omega et al. Intuitively

Asymptotic Notation Mathematics 
Relation

O ≤
Ω ≥Ω ≥

θ =

o <

ω >
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Input Size

• Usually: length (in characters) of input

• Sometimes: value of input (if it is a number)
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Complexity cases (revisited)

• Worst-case complexity: max # steps algorithm 
takes on “most challenging” input of size N

• Best-case complexity: min # steps algorithm 
takes on “easiest” input of size N

• Average-case complexity: avg # steps 
algorithm takes on random inputs of size N

• Amortized complexity: max total # steps 
algorithm takes on M “most challenging” 
consecutive inputs of size N, divided by M (i.e., 
divide the max total by M).
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Example

• Recall the function: find(x, v, n)

• Input size:  n  (the length of the array)

• T(n) = “running time for size n”

• But T(n) needs clarification:• But T(n) needs clarification:

– Worst case T(n): it runs in at most T(n) time for 

any x,v

– Best case T(n): it takes at least T(n) time for any x,v

– Average case T(n): average time over all v and x
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Bounds vs. Cases
Two orthogonal axes:

– Bound Flavor

• Upper bound (O, o)

• Lower bound (Ω, ω)

• Asymptotically tight (θ)

– Analysis Case

• Worst Case (Adversary), Tworst(n)

• Average Case, Tavg(n)

• Best Case, Tbest(n)

• Amortized, Tamort(n)

One can estimate the bounds for any given case.

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 11



Example: Upper Bound

2

2 2

2

Proof: Must find ,  such that for all ,

100

Let's try setting 2.  Then

Claim:   10 (0 )

c n n n
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n n O n
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+ ≤

+

=

=
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Using a Different Pair of Constants
2

2 2

2

Proof: Must find ,  such that for all ,

100

Let's try setting 101.  Then

Claim:   100 ( )

c n n n
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Example: Lower Bound

2

2 2

2

Proof: Must find ,  such that for all ,

100

Let's try setting 1.  Then

Claim:   100 ( )

c n n n

n n cn

c

n n n+ =
′ ′>

+ ≥
=

Ω
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Thus we can also conc 100lude 

c

n n n

n

n

n n

=
+

′

+

≥
≥

=
= 2( )nθ



Conventions of Order Notation
2 2

2 2

Order notation is not symmetric: write 

but never 

The expression ( ( )) ( ( )) is equivalent to

( ) ( ( ))

The expression ( ( )) ( ( )) is equivalent to

( )

2 (

2

)

O f n O g n

f n O g n

f n g n

n n
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=
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The expression ( ( )) ( ( )) is equivalent to

( ) ( ( ))

The right-h
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Which Function Dominates?

f(n) =

n3 + 2n2

n0.1

g(n) =

100n2 + 1000

log n

2n + 10 log n
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n + 100n0.1

5n5

n-152n/100

82log n

2n + 10 log n

n!

1000n15

3n7 + 7n

Question to class: is f = O(g) ?   Is g = O(f) ?



Race I

f(n)= n3+2n2 g(n)=100n2+1000vs.
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Race II

n0.1 log nvs.
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Race III

n + 100n0.1 2n + 10 log nvs.
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Race IV

5n5 n!vs.
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Race V

n-152n/100 1000n15vs.
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Race VI

82log(n) 3n7 + 7nvs.
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• Eliminate 

low order 

terms

• Eliminate 

3 2 2
8

3 2
8

3 2
8

3 2
8 8

16 log (10 ) 100

16 log (10 )

log (10 )

log (10) log ( )

n n n

n n

n n

n n

+

⇒

⇒

 ⇒ + 

3 2 2 3
816 log (10 ) 100 ( log( ))n n n O n n+ =

• Eliminate 

constant 

coefficients
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Sums and Recurrences

Often the function f(n) is not explicit but 

expressed as:

• A sum, or

• A recurrence• A recurrence

Need to obtain analytical formula first
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Sums
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More Sums
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Sometimes sums are easiest computed with integrals:
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Recurrences

• f(n) = 2f(n-1) + 1,  f(0) = T

• Telescoping

� f(n)+1    = 2(f(n-1)+1)
f(n-1)+1 = 2(f(n-2)+1)      × 2
f(n-2)+1 = 2(f(n-3)+1)      × 22
f(n-1)+1 = 2(f(n-2)+1)      × 2
f(n-2)+1 = 2(f(n-3)+1)      × 22

. . . . .
f(1) + 1  = 2(f(0) + 1)        × 2n-1

� f(n)+1    = 2n(f(0)+1)  = 2n(T+1)

� f(n) = 2n(T+1) - 1
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Recurrences

• Fibonacci:  f(n) = f(n-1)+f(n-2), f(0)=f(1)=1

� try f(n) = A cn What is c ?

A cn = A cn-1 + A cn-2

c2 – c – 1 = 0c – c – 1 = 0
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Constants A, B can be determined from f(0), f(1) – not 
interesting for us for the Big O notation



Recurrences

• f(n) = f(n/2) + 1,     f(1) = T

• Telescoping:

f(n) = f(n/2) + 1

f(n/2) = f(n/4) + 1f(n/2) = f(n/4) + 1

. . .

f(2) = f(1) + 1 = T + 1

� f(n) = T + log n = O(log n)
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