
CSE 373

Data Structures & Algorithms

Guest Lecturer: Sean Shih-Yen Liu Guest Lecturer: Sean Shih-Yen Liu

Lecture 04

Asymptotic Analysis (II)

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 1

Announcements

• Homework 1 due tomorrow, by 11:45pm

• Homework 2 is posted on the website, due

next Friday at the beginning class. You can

turn in in class or submit online.turn in in class or submit online.

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 2

Some Notes on Notation

Sometimes you’ll see (e.g., in Weiss)

• h(n) = O(f(n))

oror

• h(n) is O(f(n))

These are equivalent to

• h(n) ∈ O(f(n))

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 3

Big-O: Common Names

• constant: O(1)

• logarithmic:O(log n) (logkn, log n2 ∈ O(log n))

• linear: O(n)

• log-linear: O(n log n)• log-linear: O(n log n)

• quadratic: O(n2)

• cubic: O(n3)

• polynomial:O(nk) (k is a constant)

• exponential: O(cn) (c is a constant > 1)

• hyperexponential: (a tower of n exponentials

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 4

)O(2
2. . .22

Meet the Family

• O(f(n)) is the set of all functions asymptotically less than
or equal to f(n)

– o(f(n)) is the set of all functions asymptotically
strictly less than f(n)

• Ω(g(n)) is the set of all functions asymptotically greater • Ω(g(n)) is the set of all functions asymptotically greater
than or equal to g(n)

– ω(g(n)) is the set of all functions
asymptotically strictly greater than g(n)

• θ(f(n)) is the set of all functions asymptotically equal to f
(n)

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 5

Meet the Family, Formally

• h(n) ∈ O(f(n)) iff
There exist c>0 and n0>0 such that h(n) ≤≤≤≤ c f(n) for all n ≥ n0

• h(n) ∈ o(f(n)) iff
There exists an n0>0 such that h(n) < c f(n) for all c>0 and n ≥ n0

– This is equivalent to:

• h(n) ∈ Ω(g(n)) iff

lim ()/ () 0
n

h n f n
→∞

=

• h(n) ∈ Ω(g(n)) iff
There exist c>0 and n0>0 such that h(n) ≥≥≥≥ c g(n) for all n ≥ n0

• h(n) ∈ ω(g(n)) iff
There exists an n0>0 such that h(n) > c g(n) for all c>0 and n ≥ n0

– This is equivalent to:

• h(n) ∈ θ(f(n)) iff
h(n) ∈ O(f(n)) and h(n) ∈ Ω(f(n))
– This is equivalent to:

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 6

lim ()/ ()
n

h n g n
→∞

= ∞

lim ()/ () 0
n

h n f n c
→∞

= ≠

Big-Omega et al. Intuitively

Asymptotic Notation Mathematics
Relation

O ≤
Ω ≥Ω ≥

θ =

o <

ω >

7

Input Size

• Usually: length (in characters) of input

• Sometimes: value of input (if it is a number)

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 8

Complexity cases (revisited)

• Worst-case complexity: max # steps algorithm
takes on “most challenging” input of size N

• Best-case complexity: min # steps algorithm
takes on “easiest” input of size N

• Average-case complexity: avg # steps
algorithm takes on random inputs of size N

• Amortized complexity: max total # steps
algorithm takes on M “most challenging”
consecutive inputs of size N, divided by M (i.e.,
divide the max total by M).

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 9

Example

• Recall the function: find(x, v, n)

• Input size: n (the length of the array)

• T(n) = “running time for size n”

• But T(n) needs clarification:• But T(n) needs clarification:

– Worst case T(n): it runs in at most T(n) time for

any x,v

– Best case T(n): it takes at least T(n) time for any x,v

– Average case T(n): average time over all v and x

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 10

Bounds vs. Cases
Two orthogonal axes:

– Bound Flavor

• Upper bound (O, o)

• Lower bound (Ω, ω)

• Asymptotically tight (θ)

– Analysis Case

• Worst Case (Adversary), Tworst(n)

• Average Case, Tavg(n)

• Best Case, Tbest(n)

• Amortized, Tamort(n)

One can estimate the bounds for any given case.

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 11

Example: Upper Bound

2

2 2

2

Proof: Must find , such that for all ,

100

Let's try setting 2. Then

Claim: 10 (0)

c n n n

n n cn

c

n n O n

′ ′>
+ ≤

+

=

=

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 12

2 2

2

Let's try setting 2. Then

100 2

100

100

So we can set 100 and reverse the steps abov .e

c

n n n

n

n

n

n

=
+ ≤

≤
≤

′ =

Using a Different Pair of Constants
2

2 2

2

Proof: Must find , such that for all ,

100

Let's try setting 101. Then

Claim: 100 ()

c n n n

n n cn

c

n n O n

′ ′>
+ ≤

=

+ =

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 13

2 2

Let's try setting 101. Then

100 100

100 101 (divide both sides by

100 100

1

So we can set 1 and reve

n)

rs

c

n n n

n n

n

n

n

=
+ ≤

+ ≤
≤

≤
′ = e the steps above.

Example: Lower Bound

2

2 2

2

Proof: Must find , such that for all ,

100

Let's try setting 1. Then

Claim: 100 ()

c n n n

n n cn

c

n n n+ =
′ ′>

+ ≥
=

Ω

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 14

2

2 2

Let's try setting 1. Then

100

0

So we can set 0 and reverse the steps above.

Thus we can also conc 100lude

c

n n n

n

n

n n

=
+

′

+

≥
≥

=
= 2()nθ

Conventions of Order Notation
2 2

2 2

Order notation is not symmetric: write

but never

The expression (()) (()) is equivalent to

() (())

The expression (()) (()) is equivalent to

()

2 (

2

)

O f n O g n

f n O g n

f n g n

n n

O n n n

O n

=
=

Ω = Ω

= +
+ =

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 15

The expression (()) (()) is equivalent to

() (())

The right-h

f n g n

f n g n

Ω = Ω
= Ω

2

2 2

2 318

and side is a "cruder" version of the l

() ()

18 () (

(2

log) ()

f

)

e t:
nn O n O n

n n n

O

n n= Ω
= =
= Ω = Ω

=

Which Function Dominates?

f(n) =

n3 + 2n2

n0.1

g(n) =

100n2 + 1000

log n

2n + 10 log n

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 16

n + 100n0.1

5n5

n-152n/100

82log n

2n + 10 log n

n!

1000n15

3n7 + 7n

Question to class: is f = O(g) ? Is g = O(f) ?

Race I

f(n)= n3+2n2 g(n)=100n2+1000vs.

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 17

Race II

n0.1 log nvs.

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 18

Race III

n + 100n0.1 2n + 10 log nvs.

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 19

Race IV

5n5 n!vs.

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 20

Race V

n-152n/100 1000n15vs.

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 21

Race VI

82log(n) 3n7 + 7nvs.

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 22

• Eliminate

low order

terms

• Eliminate

3 2 2
8

3 2
8

3 2
8

3 2
8 8

16 log (10) 100

16 log (10)

log (10)

log (10) log ()

n n n

n n

n n

n n

+

⇒

⇒

 ⇒ +

3 2 2 3
816 log (10) 100 (log())n n n O n n+ =

• Eliminate

constant

coefficients

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 23

3 3 2
8 8

3 2
8

3
8

3
8

3
8

3

log (10) log ()

log ()

2 log ()

log ()

log (2) log()

log()

n n n

n n

n n

n n

n n

n n

⇒ +

⇒

⇒

⇒

⇒

⇒

Sums and Recurrences

Often the function f(n) is not explicit but

expressed as:

• A sum, or

• A recurrence• A recurrence

Need to obtain analytical formula first

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 24

Sums

)(
2

)1(
...21)(2

1

nO
nn

innf
n

i

=+==+++= ∑
=

)()12()12(...531)(22 nOninnf
n

==−=−++++= ∑

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 25

)(
6

)12)(1(
...21)(3

1

2222 nO
nnn

innf
n

i

=++==+++= ∑
=

)()12()12(...531)(
1

nOninnf
i

==−=−++++= ∑
=

(?)...21)(333 Onnf =+++=

(??))34()34(...951)(
1

44444 Oinnf
n

i
∑

=

=−=−++++=

More Sums

)3(
13

13
33...331)(

1

1
2 n

n

i

n
in Onf =

−
−==++++= ∑

=

+

Sometimes sums are easiest computed with integrals:

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 26

))(ln()1ln()ln(1
1

1
11

...
3

1

2

1

1

1
)(

1
1

nOndx
xin

nf
n

i

n

∑ ∫
=

=−+=+≈=++++=

)1(
1

1

1
1

1
1

11
...

3

1

2

1

1

1
)(

1
1 222222

O
n

dx
xin

nf
n

i

n

∑ ∫
=

=−+=+≈=++++=

Recurrences

• f(n) = 2f(n-1) + 1, f(0) = T

• Telescoping

� f(n)+1 = 2(f(n-1)+1)
f(n-1)+1 = 2(f(n-2)+1) × 2
f(n-2)+1 = 2(f(n-3)+1) × 22
f(n-1)+1 = 2(f(n-2)+1) × 2
f(n-2)+1 = 2(f(n-3)+1) × 22

.
f(1) + 1 = 2(f(0) + 1) × 2n-1

� f(n)+1 = 2n(f(0)+1) = 2n(T+1)

� f(n) = 2n(T+1) - 1

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 27

Recurrences

• Fibonacci: f(n) = f(n-1)+f(n-2), f(0)=f(1)=1

� try f(n) = A cn What is c ?

A cn = A cn-1 + A cn-2

c2 – c – 1 = 0c – c – 1 = 0

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 28

nnn

OBAnf

c

 +=

 −+

 +=

±=+±=

2

51

2

51

2

51
)(

2

51

2

411
2,1

Constants A, B can be determined from f(0), f(1) – not
interesting for us for the Big O notation

Recurrences

• f(n) = f(n/2) + 1, f(1) = T

• Telescoping:

f(n) = f(n/2) + 1

f(n/2) = f(n/4) + 1f(n/2) = f(n/4) + 1

. . .

f(2) = f(1) + 1 = T + 1

� f(n) = T + log n = O(log n)

10/07/2009 CSE 373 Fall 2009 -- Sean Liu 29

